如何防范网络病毒的四点建议

互联网资讯OT学习平台 发表了文章 • 0 个评论 • 10 次浏览 • 18 小时前 • 来自相关话题

自今年5月爆发wannacry勒索病毒以来,各种蠕虫病毒接踵而至,着实是让世界杀毒市场活了一把,“暗云Ⅲ”,Petya等等,一个比一个厉害,令人防不胜防,即使你染上了病毒也有可能完全不知情。
目前人们并没有养成很好的上网习惯,病毒预防的意识也很差,而且大多数用户更倾向于老旧版本的操作系统,以为旧的系统各方面都更加成熟,用起来也顺手,对于系统升级,维护方面有很强的抵触心理。






这里OTPUB小编就跟大家分享4个平时生活中预防网络病毒的建议。
1、安装杀毒软件,这一点相信大多数的人都做到了这一点;在使用杀毒软件的时候,建议开始病毒库自动更新,保证杀毒软件可以最快的识别网络上的新型病毒,另外,建议每周至少一次对个人电脑进行一些全盘病毒扫描,确保电脑没有隐藏的病毒。
2、使用基于客户端的防火墙或过滤措施,以增强计算机对黑客和恶意代码的攻击 的免疫力。或者在一些安全网站中,可对自己的计算机做病毒扫描,察看它是否存在安全漏洞与病毒。如果你经常在线,这一点很有必要,因为如果你的系统没有加设有效防护,你的个人资料很有可能会被他人窃取。
3、在使用外接设备(例如U盘,光盘,移动硬盘灯)时,先对其进行扫描,以防万一。
4、不安装来历不明的软件,下载软件要到官方指定的站点下载,切不可贪图省事去一些未知网站,以防下载的软件里面包含电脑病毒。
想要了解更多关于网络安全的知识,敬请关注7月25日14:00,Check Point与OTPUB直播平台携手举办的主题为“安全管理的未来发展趋势”直播活动,届时,Check Point资深网络安全顾问谭云老师,将对CheckPoint下一代安全管理体系进行详细阐述,为您详解安全管理的未来发展趋势。
点击此处预约直播>>>
或扫描下方二维码预约 查看全部

自今年5月爆发wannacry勒索病毒以来,各种蠕虫病毒接踵而至,着实是让世界杀毒市场活了一把,“暗云Ⅲ”,Petya等等,一个比一个厉害,令人防不胜防,即使你染上了病毒也有可能完全不知情。
目前人们并没有养成很好的上网习惯,病毒预防的意识也很差,而且大多数用户更倾向于老旧版本的操作系统,以为旧的系统各方面都更加成熟,用起来也顺手,对于系统升级,维护方面有很强的抵触心理。

勒索病毒.jpg


这里OTPUB小编就跟大家分享4个平时生活中预防网络病毒的建议。
1、安装杀毒软件,这一点相信大多数的人都做到了这一点;在使用杀毒软件的时候,建议开始病毒库自动更新,保证杀毒软件可以最快的识别网络上的新型病毒,另外,建议每周至少一次对个人电脑进行一些全盘病毒扫描,确保电脑没有隐藏的病毒。
2、使用基于客户端的防火墙或过滤措施,以增强计算机对黑客和恶意代码的攻击 的免疫力。或者在一些安全网站中,可对自己的计算机做病毒扫描,察看它是否存在安全漏洞与病毒。如果你经常在线,这一点很有必要,因为如果你的系统没有加设有效防护,你的个人资料很有可能会被他人窃取。
3、在使用外接设备(例如U盘,光盘,移动硬盘灯)时,先对其进行扫描,以防万一。
4、不安装来历不明的软件,下载软件要到官方指定的站点下载,切不可贪图省事去一些未知网站,以防下载的软件里面包含电脑病毒。
想要了解更多关于网络安全的知识,敬请关注7月25日14:00,Check Point与OTPUB直播平台携手举办的主题为“安全管理的未来发展趋势”直播活动,届时,Check Point资深网络安全顾问谭云老师,将对CheckPoint下一代安全管理体系进行详细阐述,为您详解安全管理的未来发展趋势。
点击此处预约直播>>>
或扫描下方二维码预约

论坛.jpg


​支付宝为什么很少被网络黑客攻击

互联网资讯OT学习平台 发表了文章 • 0 个评论 • 29 次浏览 • 1 天前 • 来自相关话题

现在越来越多的黑客行为都趋向以盈利作为目标,黑客通过攻击企业内部系统或网站来达到其目的,近期最受关注的莫过于5月份Wannacry勒索病毒事件,全球超过100个国家受到病毒的影响。那么,作为中国目前最大的第三方支付平台的支付宝为什么从没有传出过被黑的新闻?

在2008年,支付宝乃至阿里巴巴整个平台的网络进行了大规模的升级维护,不夸张的说,其安全级别甚至可以和五角大楼相比,这并非说黑客无法攻破,而是黑进去以后的数据连锁机制无人可破,支付宝的数据保护有自启动和认为启动两种,触发后的结果就是整个支付宝平台陷入瘫痪,等工程师修复漏洞后重启才可继续使用,而平台内的资金在这期间只是一串数字,在这期间无法转入转出分毫,也就是说,黑了你也取不走。全世界的大型银行的网络终端各有不同,唯独这个闭锁机制大同小异。
近年来,黑客行为变得似乎更加猖獗,每年都会有数起大型企业遭到入侵事件,甚至连世界知名的杀毒软件厂商卡巴斯基都惨遭毒手,正应了那句老话“玩鹰的被鹰啄了眼”;2015年6月,该公司声称探测到一次针对其系统隐蔽性极高的黑客攻击,实施这次攻击的黑客很可能是策划 2011 年 Duqu 木马的幕后黑手。就在2015年,美国还有 CVS 等连锁药店、大型电信运营商 、婚外情交友网站、大型医保企业、美国官方各部门等均被黑。国内企业也不例外甚至更严重,网站被黑的原因很大一部分是属于经济原因,但并非所有攻击都是因为经济缘故。
黑客行为一般分为以下四种:
一、受雇于他人,商业竞争对手恶意竞争,雇佣黑客攻击同行,敲诈勒索,盗取同行银行账户信息以获取既得利益;
二、恶作剧型,这一类的黑客行为大多是新手黑客,为了满足自己的虚荣心,搜索肉鸡,攻击一个网站,挂上网页木马来试验自己的水平。
三、打击报复型,在互联网行业,因相关服务不到位引起的商业纠纷陷入解决的僵局之后就容易出现黑客攻击报复的行为。
四、窃取资料型,主要是针对拥有付费产品信息的网站。
至于说黑客攻击支付宝这种巨头级企业的可能性则微乎其微,举个很简单的例子,盗贼如果想去某个村民家里偷只羊或许很容易,但是即使再多的盗贼也很难攻打下一个城市。因而一般来讲除了受雇于竞争对手的成建制黑客外很少有人敢对巨头企业下手。
在这一波一波勒索病毒爆发的浪潮之中,安全威胁是每个人头顶上挥之不去的阴云。数字时代为人类带来便利的同时,安全是永恒的话题。其实,对勒索软件的防范应该变被动为主动。Splunk 主动追踪安全威胁,显著增强追踪网络攻击者的能力。精彩尽在 7月25日14:00,Check Point与OTPUB直播平台携手举办的主题为“安全管理的未来发展趋势”直播活动,届时,Check Point资深网络安全顾问谭云老师,将对CheckPoint下一代安全管理体系进行详细阐述,为您详解安全管理的未来发展趋势。
点击此处预约直播>>> 查看全部
现在越来越多的黑客行为都趋向以盈利作为目标,黑客通过攻击企业内部系统或网站来达到其目的,近期最受关注的莫过于5月份Wannacry勒索病毒事件,全球超过100个国家受到病毒的影响。那么,作为中国目前最大的第三方支付平台的支付宝为什么从没有传出过被黑的新闻?

在2008年,支付宝乃至阿里巴巴整个平台的网络进行了大规模的升级维护,不夸张的说,其安全级别甚至可以和五角大楼相比,这并非说黑客无法攻破,而是黑进去以后的数据连锁机制无人可破,支付宝的数据保护有自启动和认为启动两种,触发后的结果就是整个支付宝平台陷入瘫痪,等工程师修复漏洞后重启才可继续使用,而平台内的资金在这期间只是一串数字,在这期间无法转入转出分毫,也就是说,黑了你也取不走。全世界的大型银行的网络终端各有不同,唯独这个闭锁机制大同小异。
近年来,黑客行为变得似乎更加猖獗,每年都会有数起大型企业遭到入侵事件,甚至连世界知名的杀毒软件厂商卡巴斯基都惨遭毒手,正应了那句老话“玩鹰的被鹰啄了眼”;2015年6月,该公司声称探测到一次针对其系统隐蔽性极高的黑客攻击,实施这次攻击的黑客很可能是策划 2011 年 Duqu 木马的幕后黑手。就在2015年,美国还有 CVS 等连锁药店、大型电信运营商 、婚外情交友网站、大型医保企业、美国官方各部门等均被黑。国内企业也不例外甚至更严重,网站被黑的原因很大一部分是属于经济原因,但并非所有攻击都是因为经济缘故。
黑客行为一般分为以下四种:
一、受雇于他人,商业竞争对手恶意竞争,雇佣黑客攻击同行,敲诈勒索,盗取同行银行账户信息以获取既得利益;
二、恶作剧型,这一类的黑客行为大多是新手黑客,为了满足自己的虚荣心,搜索肉鸡,攻击一个网站,挂上网页木马来试验自己的水平。
三、打击报复型,在互联网行业,因相关服务不到位引起的商业纠纷陷入解决的僵局之后就容易出现黑客攻击报复的行为。
四、窃取资料型,主要是针对拥有付费产品信息的网站。
至于说黑客攻击支付宝这种巨头级企业的可能性则微乎其微,举个很简单的例子,盗贼如果想去某个村民家里偷只羊或许很容易,但是即使再多的盗贼也很难攻打下一个城市。因而一般来讲除了受雇于竞争对手的成建制黑客外很少有人敢对巨头企业下手。
在这一波一波勒索病毒爆发的浪潮之中,安全威胁是每个人头顶上挥之不去的阴云。数字时代为人类带来便利的同时,安全是永恒的话题。其实,对勒索软件的防范应该变被动为主动。Splunk 主动追踪安全威胁,显著增强追踪网络攻击者的能力。精彩尽在 7月25日14:00,Check Point与OTPUB直播平台携手举办的主题为“安全管理的未来发展趋势”直播活动,届时,Check Point资深网络安全顾问谭云老师,将对CheckPoint下一代安全管理体系进行详细阐述,为您详解安全管理的未来发展趋势。
点击此处预约直播>>>

es集群节点增加和数据迁移

运维技术mars_yan 回复了问题 • 2 人关注 • 2 个回复 • 47 次浏览 • 3 天前 • 来自相关话题

InnoDB: Error: Table "mysql"."innodb_table_stats" not found.

数据库采菊篱下 回复了问题 • 2 人关注 • 1 个回复 • 24 次浏览 • 3 天前 • 来自相关话题

DevOps详解

运维技术OS小编 发表了文章 • 0 个评论 • 27 次浏览 • 4 天前 • 来自相关话题

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。
 
但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。
 
最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。
 本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158​  

目录






1. 简介​

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。




开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。
 
1.1 管理信条
 
喜欢 | 作者 Jerome Kehrli ,译者 大愚若智 发布于 2017年4月24日. 估计阅读时间: 1 分钟 | 智能化运维、Serverless、DevOps......2017年有哪些最新运维技术趋势?CNUTCon即将为你揭秘!1 讨论分享到:微博微信FacebookTwitter有道云笔记邮件分享
稍后阅读
我的阅读清单

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。

相关厂商内容

聊聊容器编排与管理的挑战
智能化运维技术详解

机器学习模型训练的Kubernetes实践
京东物流系统自动化运维平台技术揭密
基于资产配置业务场景下的全链路监控平台

相关赞助商

CNUTCon全球运维技术大会,9月10日-9月11日,上海·光大会展中心大酒店,精彩内容抢先看

但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。

最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。

本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158

目录1. 简介 1.1 管理信条 1.2 一个典型的IT组织 1.3 运维人员测挫败感 1.4 基础架构自动化 1.5 DevOps:仅此一次,一颗神奇的银子弹 2. 基础架构即代码 2.1 概述 2.2 DevOps工具链 2.3 收益 3. 持续交付 3.1 从实践中学习 3.2 自动化 3.3 更频繁的部署 3.4 持续交付的前提需求 3.5 零停机部署 4. 协作 4.1 混乱之墙 4.2 软件开发流程 4.3 共享工具 4.4 协同工作 5. 结论1. 简介

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。

1.1 管理信条

IT管理这场战争的原动力到底是什么?换句话说,在软件开发项目中,管理工作首要的,以及最重要的目的是什么?

有什么想法吗?

我来提供一个线索吧:在建立一家初创公司时,最重要的事情是什么?

当然是要加快上市时间(TTM)!

上市时间(即TTM)是指一件产品从最初的构思到最终可供用户使用或购买这一过程所需要的时间。对于产品很快会过时的行业,TTM是一个非常重要的概念。

在软件工程方面,所采用的方法、业务,以及具体技术几乎每年都会变化,因而TTM就成了一个非常重要的KPI(关键绩效指标)。

TTM通常也会被叫做前置时间(Lead Time)。

第一个问题在于,(很多人认为)在开发过程中TTM和产品质量是两个对立的属性。在下文可以看到,改善质量(进而提高稳定性)是运维人员的目的,而开发者的目的在于降低前置时间(进而提高TTM)。

请容我来解释一下。
IT组织或部门通常会通过两个关键的KPI进行评估:软件本身的质量,因而需要尽可能减少缺陷的数量;此外还有TTM,因而需要将业务构想(通常由业务用户提供)变为最终成果,并以尽可能快的速度提供给用户或客户。

这里的问题在于,大部分情况下这两个截然不同的目的是由两个不同团队提供支持的:负责构建软件的开发者,以及负责运行软件的运维人员。
 
1.2 一个典型的IT组织
在组织内部负责管理重要IT部门的典型IT组织通常看起来是这样的:




主要由于历史的原因(大部分运维人员来自硬件和电信业务领域),运维人员和开发者分属不同的组织结构分支。开发者属于研发部门,而运维人员大部分时候属于基础架构部门(或专门的运维部门)。

别忘了,他们有着不同的目的:




此外作为旁注,这两个团队有时候会使用不同的预算来运营。开发团队使用构建(Build)预算,运维团队使用运营(Run)预算。不同的预算,对控制权越来越高的需求,以及企业IT成本的缩水,这些因素结合在一起会进一步放大两个团队各自目的的对立性。

(依本人愚见,时至今日,随着人与人之间无时无刻随时随地进行的交互,以及由不同目的推动着企业和社会进行数字化转型,IT预算方面古老的“规划/构建/运行”框架已经不那么合理了,不过这又是另一回事了。)
 
1.3 运维人员测挫败感
接下来看看运维人员,一起看看典型的运维团队把大部分时间都花在哪里了:




来源:Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via James Hamilton [Amazon Web Services 
 
生产团队有将近一半(47%)的时间花在了与部署有关的工作中:
执行实际的部署工作,或修复与部署工作有关的问题
这样的KPI其实相当疯狂,但实际上我们早就应该采纳。实际上早在40年前,计算机科学的“原始时代”就已涌现出运维团队,当时计算机主要运用在工业界,运维人员需要手工运行大量命令来执行自己的任务。为了履行职责,他们已经习惯于按照清单运行各种各样的命令或手工流程。

突然有一天他们终于意识到自己“总在做着相同的事情”,然而长达四十多年的工作过程中却几乎没人考虑过变革。

考虑到这一点你会发现,实在是太疯狂了。平均来说,运维人员将近一半的时间都在处理与部署有关的任务!

为了改变这种状况,必须考虑到两个最关键的需求:
通过自动化部署将目前这种手工任务所需的时间减少31%。通过产业化措施(类似于通过XP和敏捷实现的软件开发产业化)将需要处理的与这些部署有关的问题减少16%。
 
1.4 基础架构自动化
在这方面也有一个相当富有启发性的统计结果:

以手工操作的数量所表示的成功部署概率。




这些统计告诉我们:
只需手工运行5条命令的情况下,成功部署的概率就已跌至86%。如需手工运行55条命令,成功部署的概率将跌至22%。如需手工运行100条命令,成功部署的概率将趋近于0(仅2%)!
成功部署意味着软件能够按照预期在生产环境中运行。未能成功部署意味着有东西出错,可能需要进行必要的分析才能了解部署过程中哪里出错,是否需要应用某种补丁,或需要修改某些配置。

因此让这一切实现自动化并不惜一切代价避免手工操作似乎是个好主意,对吧?

那么行业里这方面的现状是怎样的:




(说实话,这个统计信息比较老了,是2013年的结果,相信现在的结果会有所不同)

然而这也可以让我们明确的知道,在基础架构自动化方面我们还有多远的路要走,并且DevOps的基本原则和实践依然是那么的重要。

网络巨头们当然会通过新的方法和实践及时满足自己的需求,他们早已开始构建自己的工程业务,而正是他们所确立的实践逐渐衍生出当今我们所熟悉的DevOps。

看看这些网络巨头们在这方面目前所处的位置吧,举几个例子:
Facebook有数千名开发和运维人员,成千上万台服务器。平均来说一位运维人员负责500台服务器(还认为自动化是可选的吗?)他们每天部署两次(环式部署,Deployment ring的概念)。Flickr每天部署10次。Netflix明确针对失败进行各种设计!他们的软件按照设计从最底层即可容忍系统失败,他们会在生产环境中进行全面的测试:每天通过随机关闭虚拟机的方式在生产环境中执行65000次失败测试…… 并确保这种情况下一切依然可以正常工作。
他们这种做法秘密何在?
 
 
1.5 DevOps:仅此一次,一颗神奇的银子弹
他们的秘密很简单:将敏捷扩展至生产端:
 




喜欢 | 作者 Jerome Kehrli ,译者 大愚若智 发布于 2017年4月24日. 估计阅读时间: 1 分钟 | 智能化运维、Serverless、DevOps......2017年有哪些最新运维技术趋势?CNUTCon即将为你揭秘!1 讨论分享到:微博微信FacebookTwitter有道云笔记邮件分享
稍后阅读
我的阅读清单

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。

相关厂商内容

聊聊容器编排与管理的挑战
智能化运维技术详解

机器学习模型训练的Kubernetes实践
京东物流系统自动化运维平台技术揭密
基于资产配置业务场景下的全链路监控平台

相关赞助商

CNUTCon全球运维技术大会,9月10日-9月11日,上海·光大会展中心大酒店,精彩内容抢先看

但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。

最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。

本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158

目录1. 简介 1.1 管理信条 1.2 一个典型的IT组织 1.3 运维人员测挫败感 1.4 基础架构自动化 1.5 DevOps:仅此一次,一颗神奇的银子弹 2. 基础架构即代码 2.1 概述 2.2 DevOps工具链 2.3 收益 3. 持续交付 3.1 从实践中学习 3.2 自动化 3.3 更频繁的部署 3.4 持续交付的前提需求 3.5 零停机部署 4. 协作 4.1 混乱之墙 4.2 软件开发流程 4.3 共享工具 4.4 协同工作 5. 结论1. 简介

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。

1.1 管理信条

IT管理这场战争的原动力到底是什么?换句话说,在软件开发项目中,管理工作首要的,以及最重要的目的是什么?

有什么想法吗?

我来提供一个线索吧:在建立一家初创公司时,最重要的事情是什么?

当然是要加快上市时间(TTM)!

上市时间(即TTM)是指一件产品从最初的构思到最终可供用户使用或购买这一过程所需要的时间。对于产品很快会过时的行业,TTM是一个非常重要的概念。

在软件工程方面,所采用的方法、业务,以及具体技术几乎每年都会变化,因而TTM就成了一个非常重要的KPI(关键绩效指标)。

TTM通常也会被叫做前置时间(Lead Time)。

第一个问题在于,(很多人认为)在开发过程中TTM和产品质量是两个对立的属性。在下文可以看到,改善质量(进而提高稳定性)是运维人员的目的,而开发者的目的在于降低前置时间(进而提高TTM)。

请容我来解释一下。

IT组织或部门通常会通过两个关键的KPI进行评估:软件本身的质量,因而需要尽可能减少缺陷的数量;此外还有TTM,因而需要将业务构想(通常由业务用户提供)变为最终成果,并以尽可能快的速度提供给用户或客户。

这里的问题在于,大部分情况下这两个截然不同的目的是由两个不同团队提供支持的:负责构建软件的开发者,以及负责运行软件的运维人员。

1.2 一个典型的IT组织

在组织内部负责管理重要IT部门的典型IT组织通常看起来是这样的:

主要由于历史的原因(大部分运维人员来自硬件和电信业务领域),运维人员和开发者分属不同的组织结构分支。开发者属于研发部门,而运维人员大部分时候属于基础架构部门(或专门的运维部门)。

别忘了,他们有着不同的目的:

此外作为旁注,这两个团队有时候会使用不同的预算来运营。开发团队使用构建(Build)预算,运维团队使用运营(Run)预算。不同的预算,对控制权越来越高的需求,以及企业IT成本的缩水,这些因素结合在一起会进一步放大两个团队各自目的的对立性。

(依本人愚见,时至今日,随着人与人之间无时无刻随时随地进行的交互,以及由不同目的推动着企业和社会进行数字化转型,IT预算方面古老的“规划/构建/运行”框架已经不那么合理了,不过这又是另一回事了。)

1.3 运维人员测挫败感

接下来看看运维人员,一起看看典型的运维团队把大部分时间都花在哪里了:

(来源:Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via James Hamilton [Amazon Web Services]

生产团队有将近一半(47%)的时间花在了与部署有关的工作中:

执行实际的部署工作,或
修复与部署工作有关的问题

这样的KPI其实相当疯狂,但实际上我们早就应该采纳。实际上早在40年前,计算机科学的“原始时代”就已涌现出运维团队,当时计算机主要运用在工业界,运维人员需要手工运行大量命令来执行自己的任务。为了履行职责,他们已经习惯于按照清单运行各种各样的命令或手工流程。

突然有一天他们终于意识到自己“总在做着相同的事情”,然而长达四十多年的工作过程中却几乎没人考虑过变革。

考虑到这一点你会发现,实在是太疯狂了。平均来说,运维人员将近一半的时间都在处理与部署有关的任务!

为了改变这种状况,必须考虑到两个最关键的需求:

通过自动化部署将目前这种手工任务所需的时间减少31%。
通过产业化措施(类似于通过XP和敏捷实现的软件开发产业化)将需要处理的与这些部署有关的问题减少16%。

1.4 基础架构自动化

在这方面也有一个相当富有启发性的统计结果:

以手工操作的数量所表示的成功部署概率。

这些统计告诉我们:

只需手工运行5条命令的情况下,成功部署的概率就已跌至86%。
如需手工运行55条命令,成功部署的概率将跌至22%。
如需手工运行100条命令,成功部署的概率将趋近于0(仅2%)!

成功部署意味着软件能够按照预期在生产环境中运行。未能成功部署意味着有东西出错,可能需要进行必要的分析才能了解部署过程中哪里出错,是否需要应用某种补丁,或需要修改某些配置。

因此让这一切实现自动化并不惜一切代价避免手工操作似乎是个好主意,对吧?

那么行业里这方面的现状是怎样的:

(来源:IT Ops & DevOps Productivity Report 2013 - Rebellabs )

(说实话,这个统计信息比较老了,是2013年的结果,相信现在的结果会有所不同)

然而这也可以让我们明确的知道,在基础架构自动化方面我们还有多远的路要走,并且DevOps的基本原则和实践依然是那么的重要。

网络巨头们当然会通过新的方法和实践及时满足自己的需求,他们早已开始构建自己的工程业务,而正是他们所确立的实践逐渐衍生出当今我们所熟悉的DevOps。

看看这些网络巨头们在这方面目前所处的位置吧,举几个例子:

Facebook有数千名开发和运维人员,成千上万台服务器。平均来说一位运维人员负责500台服务器(还认为自动化是可选的吗?)他们每天部署两次(环式部署,Deployment ring的概念)。
Flickr每天部署10次。
Netflix明确针对失败进行各种设计!他们的软件按照设计从最底层即可容忍系统失败,他们会在生产环境中进行全面的测试:每天通过随机关闭虚拟机的方式在生产环境中执行65000次失败测试…… 并确保这种情况下一切依然可以正常工作。

他们这种做法秘密何在?

1.5 DevOps:仅此一次,一颗神奇的银子弹

他们的秘密很简单:将敏捷扩展至生产端:

DevOps的共存主要是为了扩展敏捷开发实践,进一步完善软件变更在构建、验证、部署、交付等阶段中的流动,同时通过软件应用程序的全面所有权予力跨职能团队完成从设计到生产支持等各环节的工作。

DevOps鼓励软件开发者和IT运维人员之间所进行的沟通、协作、集成和自动化,借此有助于改善双方在交付软件过程中的速度和质量。

DevOps团队更侧重于通过标准化开发环境和自动化交付流程改善交付工作的可预测性、效率、安全性,以及可维护性。理想情况下,DevOps可以为开发者提供更可控的生产环境,帮助他们更好地理解生产基础架构。

DevOps鼓励团队自主进行自己应用程序的构建、验证、交付和支持。
那么核心原则到底是什么?




下文将介绍最重要的三大基本原则。
 
2. 基础架构即代码
人总会犯错,因为人脑实在是不擅长处理重复性的任务,相比Shell脚本,人类的速度实在是太慢了。毕竟我们都是人类,因此有必要像处理代码那样考虑和处理有关基础架构的概念!

基础架构即代码(IaC)是大部分通用DevOps实践的前提要求,例如版本控制、代码审阅、持续集成、自动化测试。这一概念涉及计算基础架构(容器、虚拟机、物理机、软件安装等)的管理和供应,以及通过机器可处理的定义文件或脚本对其进行的配置,交互式配置工具和手工命令的使用已经不合时宜了。

这一原则对DevOps的重要性怎么强调都不为过,它可以真正将软件开发相关的实践应用给服务器和基础架构。

云计算使得复杂的IT部署可以继续效仿传统物理拓扑。我们可以相对轻松地对复杂虚拟网络、存储和服务器的构建实现自动化。服务器环境的方方面面,上至基础架构下至操作系统设置,均可编码并存储至版本控制仓库。
 
2.1 概述
以非常概括的方式来看,基础架构和运维所需实现的自动化程度可通过下图这种架构来表示:
 




上述架构图中作为示例的工具主要面向不同层的构建工作,实际上DevOps工具链的作用远不止如此。

我觉得在这里可以略微深入地谈谈DevOps的工具链了。
 
2.2 DevOps工具链
DevOps实际是一种文化上的变迁,代表了开发、运维、测试等环节之间的协作,因此DevOps工具是非常多种多样的,甚至可以由多种工具组成一个完整的DevOps工具链。此类工具可以应用于一种或多种类别,并可体现出软件开发和交付过程的不同阶段:
编码:代码开发和审阅,版本控制工具、代码合并工具构建:持续集成工具、构建状态统计工具测试:通过测试和结果确定绩效的工具打包:成品仓库、应用程序部署前暂存发布:变更管理、发布审批、发布自动化配置:基础架构配置和部署,基础架构即代码工具监视:应用程序性能监视、最终用户体验
虽然可用工具有很多,但其中一些环节是组织内部应用DevOps工具链不可或缺的。

诸如Docker(容器化)、Jenkins(持续集成)、Puppet(基础架构构建)、Vagrant(虚拟化平台)等常用、广泛使用的工具都是2016年的DevOps热门工具。
 
基础架构组件的版本控制、持续集成和自动化测试
 
基础架构的版本控制能力(而非基础架构的构建脚本或配置文件)及对其进行自动化测试的能力极其重要。

DevOps最终会将30年前软件工程领域所采用的同一套XP实践带至生产端。

此外基础架构元素应该能向软件交付物一样进行持续集成。
 
 
2.3 收益
DevOps的收益有很多,包括但不限于:
可重复性与可靠性:时至今日,构建生产用计算机只需要运行脚本或必要的puppet命令即可。通过恰当地使用Docker容器或Vagrant虚拟机,只需运行一条命令即可配置好包含操作系统层以及所需软件和配置的生产用计算机。当然,随着各种变更或软件开发、持续集成,并自动测试,这套构建脚本或机制也会进行持续集成。
最终幸亏有了XP或敏捷,我们在软件开发端所使用的同一套实践也能让运维端获益。
生产力:一键部署,一键供应,一键创建新环境……整个生产环境可以通过一条命令或一键点击的方式创建。这样的一条命令也许会运行长达数小时,但在这过程中运维人员可以从事其他更有趣的工作,而无需等待一条命令执行完毕后继续输入下一条命令,毕竟这样的过程有时候可能需要花费几天时间才能完成……恢复时间:一键点击即可恢复生产环境,就是这么简单。确保基础架构的同质:彻底避免运维人员每次构建环境或安装软件时最终获得的结果与预期有所差异,这是确保基础架构绝对同质(Homogeneous)并且可再现的唯一可行方法。以此为基础,通过对脚本或Puppet配置文件使用版本控制机制,我们甚至可以重建出与上周、上个月,或软件特定版本发布时完全一致的生产环境。维持整齐划一的标准:基础架构标准甚至可以不复存在,代码本身就是标准。让开发者自行完成大部分工作:如果开发者自己突然可以在自己的基础架构上一键点击重建生产环境,他们也就可以自行完成很多与生产环境有关的任务,例如更好地理解生产失败,提供更恰当的配置,实现部署脚本等。
这只是我个人感觉IaC可提供的部分收益,相信还有很多其他收益。
 
 
3. 持续交付
 
持续交付是一种可以帮助团队以更短的周期交付软件的方法,该方法确保了团队可以在任何时间发布出可靠的软件。该方法意在以更快速度更高频率进行软件的构建、测试和发布。

通过对生产环境中的应用程序进行更高频次的增量更新,这种方法有助于降低交付变更过程中涉及的成本、时间和风险。足够简单直接并且可重复的部署流程对持续交付而言至关重要。

注意:持续交付 ≠ 持续部署 - 有时候很多人会把持续交付误认为成持续部署。持续部署是指每个变更可以自动部署到生产环境。持续交付是指团队确保每个变更可以部署至生产环境,但也许并不需要实际部署,这通常可能是出于业务方面的原因。只有成功实现持续交付的前提下,才能进行持续部署。

持续交付的主要想法在于:
部署越频繁,对部署流程就会越熟悉,自动化机制就能获得更好的结果。如果同一件事每天需要执行3次,很快你将变的无比娴熟,但很快也会因为日复一日解决同样的问题而感到厌烦。部署越频繁,所部属的变更集就越微不足道,而这些微不足道的内容最有可能出错,甚至可能导致丢失对整个变更集的控制力。部署越频繁,TTR(修复/解决所需时间)指标就会越出色,从业务用户处获得有关功能的各类反馈的速度越快,作出改进以便完美满足对方需求的过程也会越简单(这方面TTR与TTM其实非常相似)。




但持续交付并不仅仅是尽可能频繁地构建可发布、生产就绪版本的软件产品那么简单。持续交付包含3个关键实践:
从实践中学习自动化更频繁的部署
 
3.1 从实践中学习
 
持续交付的关键在于要能从实践中学习。真理并不存在于开发团队中,而在于业务用户中。然而无论花多长时间,没人能真正清楚地表达自己的想法,或者将自己的想法用清晰的文档概括出来。也正是因此,敏捷方法论强调将功能提供给用户,并不惜一切代价从用户处获得尽可能多的反馈。

持续交付与持续部署类似,需要尽可能减少前置时间,这也是尽快从用户处获得“真理”的关键。

但真理绝对不会来自正规形式的用户反馈。我们绝不能尽信自己的用户或寄希望于通过正规形式的反馈了解用户。我们只能相信自己的度量。

痴迷于度量是精益创业(Lean Startup)活动中一个重要的概念,但这一概念对DevOps同样重要。我们应该度量一切!确定最恰当的度量指标可以让团队了解某种方法最终能否成功或失败,了解怎样做可以获得更好的结果,以及哪些最成功的做法同时也蕴含着一定的风险。为了帮助团队做出更明智的决策,在确定要衡量的指标时,一定要抱着“宁多勿少”的原则。

不需要“考虑”,只需要“知道”!“知道”的唯一方法就是度量,度量一切:响应时间、用户思考时间、展示次数、API调用次数、点击率等,但这些并非需要度量的全部。找出所有能让你更进一步了解用户对功能看法的度量指标,对所有这些指标进行度量!

这种方法可以表示为如下形式:




 
 
喜欢 | 作者 Jerome Kehrli ,译者 大愚若智 发布于 2017年4月24日. 估计阅读时间: 1 分钟 | 智能化运维、Serverless、DevOps......2017年有哪些最新运维技术趋势?CNUTCon即将为你揭秘!1 讨论分享到:微博微信FacebookTwitter有道云笔记邮件分享
稍后阅读
我的阅读清单

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。

相关厂商内容

聊聊容器编排与管理的挑战
智能化运维技术详解

机器学习模型训练的Kubernetes实践
京东物流系统自动化运维平台技术揭密
基于资产配置业务场景下的全链路监控平台

相关赞助商

CNUTCon全球运维技术大会,9月10日-9月11日,上海·光大会展中心大酒店,精彩内容抢先看

但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。

最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。

本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158

目录1. 简介 1.1 管理信条 1.2 一个典型的IT组织 1.3 运维人员测挫败感 1.4 基础架构自动化 1.5 DevOps:仅此一次,一颗神奇的银子弹 2. 基础架构即代码 2.1 概述 2.2 DevOps工具链 2.3 收益 3. 持续交付 3.1 从实践中学习 3.2 自动化 3.3 更频繁的部署 3.4 持续交付的前提需求 3.5 零停机部署 4. 协作 4.1 混乱之墙 4.2 软件开发流程 4.3 共享工具 4.4 协同工作 5. 结论1. 简介

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。

1.1 管理信条

IT管理这场战争的原动力到底是什么?换句话说,在软件开发项目中,管理工作首要的,以及最重要的目的是什么?

有什么想法吗?

我来提供一个线索吧:在建立一家初创公司时,最重要的事情是什么?

当然是要加快上市时间(TTM)!

上市时间(即TTM)是指一件产品从最初的构思到最终可供用户使用或购买这一过程所需要的时间。对于产品很快会过时的行业,TTM是一个非常重要的概念。

在软件工程方面,所采用的方法、业务,以及具体技术几乎每年都会变化,因而TTM就成了一个非常重要的KPI(关键绩效指标)。

TTM通常也会被叫做前置时间(Lead Time)。

第一个问题在于,(很多人认为)在开发过程中TTM和产品质量是两个对立的属性。在下文可以看到,改善质量(进而提高稳定性)是运维人员的目的,而开发者的目的在于降低前置时间(进而提高TTM)。

请容我来解释一下。

IT组织或部门通常会通过两个关键的KPI进行评估:软件本身的质量,因而需要尽可能减少缺陷的数量;此外还有TTM,因而需要将业务构想(通常由业务用户提供)变为最终成果,并以尽可能快的速度提供给用户或客户。

这里的问题在于,大部分情况下这两个截然不同的目的是由两个不同团队提供支持的:负责构建软件的开发者,以及负责运行软件的运维人员。

1.2 一个典型的IT组织

在组织内部负责管理重要IT部门的典型IT组织通常看起来是这样的:

主要由于历史的原因(大部分运维人员来自硬件和电信业务领域),运维人员和开发者分属不同的组织结构分支。开发者属于研发部门,而运维人员大部分时候属于基础架构部门(或专门的运维部门)。

别忘了,他们有着不同的目的:

此外作为旁注,这两个团队有时候会使用不同的预算来运营。开发团队使用构建(Build)预算,运维团队使用运营(Run)预算。不同的预算,对控制权越来越高的需求,以及企业IT成本的缩水,这些因素结合在一起会进一步放大两个团队各自目的的对立性。

(依本人愚见,时至今日,随着人与人之间无时无刻随时随地进行的交互,以及由不同目的推动着企业和社会进行数字化转型,IT预算方面古老的“规划/构建/运行”框架已经不那么合理了,不过这又是另一回事了。)

1.3 运维人员测挫败感

接下来看看运维人员,一起看看典型的运维团队把大部分时间都花在哪里了:

(来源:Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via James Hamilton [Amazon Web Services]

生产团队有将近一半(47%)的时间花在了与部署有关的工作中:

执行实际的部署工作,或
修复与部署工作有关的问题

这样的KPI其实相当疯狂,但实际上我们早就应该采纳。实际上早在40年前,计算机科学的“原始时代”就已涌现出运维团队,当时计算机主要运用在工业界,运维人员需要手工运行大量命令来执行自己的任务。为了履行职责,他们已经习惯于按照清单运行各种各样的命令或手工流程。

突然有一天他们终于意识到自己“总在做着相同的事情”,然而长达四十多年的工作过程中却几乎没人考虑过变革。

考虑到这一点你会发现,实在是太疯狂了。平均来说,运维人员将近一半的时间都在处理与部署有关的任务!

为了改变这种状况,必须考虑到两个最关键的需求:

通过自动化部署将目前这种手工任务所需的时间减少31%。
通过产业化措施(类似于通过XP和敏捷实现的软件开发产业化)将需要处理的与这些部署有关的问题减少16%。

1.4 基础架构自动化

在这方面也有一个相当富有启发性的统计结果:

以手工操作的数量所表示的成功部署概率。

这些统计告诉我们:

只需手工运行5条命令的情况下,成功部署的概率就已跌至86%。
如需手工运行55条命令,成功部署的概率将跌至22%。
如需手工运行100条命令,成功部署的概率将趋近于0(仅2%)!

成功部署意味着软件能够按照预期在生产环境中运行。未能成功部署意味着有东西出错,可能需要进行必要的分析才能了解部署过程中哪里出错,是否需要应用某种补丁,或需要修改某些配置。

因此让这一切实现自动化并不惜一切代价避免手工操作似乎是个好主意,对吧?

那么行业里这方面的现状是怎样的:

(来源:IT Ops & DevOps Productivity Report 2013 - Rebellabs )

(说实话,这个统计信息比较老了,是2013年的结果,相信现在的结果会有所不同)

然而这也可以让我们明确的知道,在基础架构自动化方面我们还有多远的路要走,并且DevOps的基本原则和实践依然是那么的重要。

网络巨头们当然会通过新的方法和实践及时满足自己的需求,他们早已开始构建自己的工程业务,而正是他们所确立的实践逐渐衍生出当今我们所熟悉的DevOps。

看看这些网络巨头们在这方面目前所处的位置吧,举几个例子:

Facebook有数千名开发和运维人员,成千上万台服务器。平均来说一位运维人员负责500台服务器(还认为自动化是可选的吗?)他们每天部署两次(环式部署,Deployment ring的概念)。
Flickr每天部署10次。
Netflix明确针对失败进行各种设计!他们的软件按照设计从最底层即可容忍系统失败,他们会在生产环境中进行全面的测试:每天通过随机关闭虚拟机的方式在生产环境中执行65000次失败测试…… 并确保这种情况下一切依然可以正常工作。

他们这种做法秘密何在?

1.5 DevOps:仅此一次,一颗神奇的银子弹

他们的秘密很简单:将敏捷扩展至生产端:

DevOps的共存主要是为了扩展敏捷开发实践,进一步完善软件变更在构建、验证、部署、交付等阶段中的流动,同时通过软件应用程序的全面所有权予力跨职能团队完成从设计到生产支持等各环节的工作。

DevOps鼓励软件开发者和IT运维人员之间所进行的沟通、协作、集成和自动化,借此有助于改善双方在交付软件过程中的速度和质量。

DevOps团队更侧重于通过标准化开发环境和自动化交付流程改善交付工作的可预测性、效率、安全性,以及可维护性。理想情况下,DevOps可以为开发者提供更可控的生产环境,帮助他们更好地理解生产基础架构。

DevOps鼓励团队自主进行自己应用程序的构建、验证、交付和支持。

那么核心原则到底是什么?

下文将介绍最重要的三大基本原则。

2. 基础架构即代码

人总会犯错,因为人脑实在是不擅长处理重复性的任务,相比Shell脚本,人类的速度实在是太慢了。毕竟我们都是人类,因此有必要像处理代码那样考虑和处理有关基础架构的概念!

基础架构即代码(IaC)是大部分通用DevOps实践的前提要求,例如版本控制、代码审阅、持续集成、自动化测试。这一概念涉及计算基础架构(容器、虚拟机、物理机、软件安装等)的管理和供应,以及通过机器可处理的定义文件或脚本对其进行的配置,交互式配置工具和手工命令的使用已经不合时宜了。

这一原则对DevOps的重要性怎么强调都不为过,它可以真正将软件开发相关的实践应用给服务器和基础架构。

云计算使得复杂的IT部署可以继续效仿传统物理拓扑。我们可以相对轻松地对复杂虚拟网络、存储和服务器的构建实现自动化。服务器环境的方方面面,上至基础架构下至操作系统设置,均可编码并存储至版本控制仓库。

2.1 概述

以非常概括的方式来看,基础架构和运维所需实现的自动化程度可通过下图这种架构来表示:

上述架构图中作为示例的工具主要面向不同层的构建工作,实际上DevOps工具链的作用远不止如此。

我觉得在这里可以略微深入地谈谈DevOps的工具链了。

2.2 DevOps工具链

DevOps实际是一种文化上的变迁,代表了开发、运维、测试等环节之间的协作,因此DevOps工具是非常多种多样的,甚至可以由多种工具组成一个完整的DevOps工具链。此类工具可以应用于一种或多种类别,并可体现出软件开发和交付过程的不同阶段:

编码:代码开发和审阅,版本控制工具、代码合并工具
构建:持续集成工具、构建状态统计工具
测试:通过测试和结果确定绩效的工具
打包:成品仓库、应用程序部署前暂存
发布:变更管理、发布审批、发布自动化
配置:基础架构配置和部署,基础架构即代码工具
监视:应用程序性能监视、最终用户体验

虽然可用工具有很多,但其中一些环节是组织内部应用DevOps工具链不可或缺的。

诸如Docker(容器化)、Jenkins(持续集成)、Puppet(基础架构构建)、Vagrant(虚拟化平台)等常用、广泛使用的工具都是2016年的DevOps热门工具。

基础架构组件的版本控制、持续集成和自动化测试

基础架构的版本控制能力(而非基础架构的构建脚本或配置文件)及对其进行自动化测试的能力极其重要。

DevOps最终会将30年前软件工程领域所采用的同一套XP实践带至生产端。

此外基础架构元素应该能向软件交付物一样进行持续集成。

2.3 收益

DevOps的收益有很多,包括但不限于:

可重复性与可靠性:时至今日,构建生产用计算机只需要运行脚本或必要的puppet命令即可。通过恰当地使用Docker容器或Vagrant虚拟机,只需运行一条命令即可配置好包含操作系统层以及所需软件和配置的生产用计算机。当然,随着各种变更或软件开发、持续集成,并自动测试,这套构建脚本或机制也会进行持续集成。

最终幸亏有了XP或敏捷,我们在软件开发端所使用的同一套实践也能让运维端获益。

生产力:一键部署,一键供应,一键创建新环境……整个生产环境可以通过一条命令或一键点击的方式创建。这样的一条命令也许会运行长达数小时,但在这过程中运维人员可以从事其他更有趣的工作,而无需等待一条命令执行完毕后继续输入下一条命令,毕竟这样的过程有时候可能需要花费几天时间才能完成……
恢复时间!:一键点击即可恢复生产环境,就是这么简单。
确保基础架构的同质:彻底避免运维人员每次构建环境或安装软件时最终获得的结果与预期有所差异,这是确保基础架构绝对同质(Homogeneous)并且可再现的唯一可行方法。以此为基础,通过对脚本或Puppet配置文件使用版本控制机制,我们甚至可以重建出与上周、上个月,或软件特定版本发布时完全一致的生产环境。
维持整齐划一的标准:基础架构标准甚至可以不复存在,代码本身就是标准。
让开发者自行完成大部分工作:如果开发者自己突然可以在自己的基础架构上一键点击重建生产环境,他们也就可以自行完成很多与生产环境有关的任务,例如更好地理解生产失败,提供更恰当的配置,实现部署脚本等。

这只是我个人感觉IaC可提供的部分收益,相信还有很多其他收益。

3. 持续交付

持续交付是一种可以帮助团队以更短的周期交付软件的方法,该方法确保了团队可以在任何时间发布出可靠的软件。该方法意在以更快速度更高频率进行软件的构建、测试和发布。

通过对生产环境中的应用程序进行更高频次的增量更新,这种方法有助于降低交付变更过程中涉及的成本、时间和风险。足够简单直接并且可重复的部署流程对持续交付而言至关重要。

注意:持续交付 ≠ 持续部署 - 有时候很多人会把持续交付误认为成持续部署。持续部署是指每个变更可以自动部署到生产环境。持续交付是指团队确保每个变更可以部署至生产环境,但也许并不需要实际部署,这通常可能是出于业务方面的原因。只有成功实现持续交付的前提下,才能进行持续部署。

持续交付的主要想法在于:

部署越频繁,对部署流程就会越熟悉,自动化机制就能获得更好的结果。如果同一件事每天需要执行3次,很快你将变的无比娴熟,但很快也会因为日复一日解决同样的问题而感到厌烦。
部署越频繁,所部属的变更集就越微不足道,而这些微不足道的内容最有可能出错,甚至可能导致丢失对整个变更集的控制力。
部署越频繁,TTR(修复/解决所需时间)指标就会越出色,从业务用户处获得有关功能的各类反馈的速度越快,作出改进以便完美满足对方需求的过程也会越简单(这方面TTR与TTM其实非常相似)。

(来源:Ops Meta-Metrics: The Currency You Pay For Change )

但持续交付并不仅仅是尽可能频繁地构建可发布、生产就绪版本的软件产品那么简单。持续交付包含3个关键实践:

从实践中学习
自动化
更频繁的部署

3.1 从实践中学习

持续交付的关键在于要能从实践中学习。真理并不存在于开发团队中,而在于业务用户中。然而无论花多长时间,没人能真正清楚地表达自己的想法,或者将自己的想法用清晰的文档概括出来。也正是因此,敏捷方法论强调将功能提供给用户,并不惜一切代价从用户处获得尽可能多的反馈。

持续交付与持续部署类似,需要尽可能减少前置时间,这也是尽快从用户处获得“真理”的关键。

但真理绝对不会来自正规形式的用户反馈。我们绝不能尽信自己的用户或寄希望于通过正规形式的反馈了解用户。我们只能相信自己的度量。

痴迷于度量是精益创业(Lean Startup)活动中一个重要的概念,但这一概念对DevOps同样重要。我们应该度量一切!确定最恰当的度量指标可以让团队了解某种方法最终能否成功或失败,了解怎样做可以获得更好的结果,以及哪些最成功的做法同时也蕴含着一定的风险。为了帮助团队做出更明智的决策,在确定要衡量的指标时,一定要抱着“宁多勿少”的原则。

不需要“考虑”,只需要“知道”!“知道”的唯一方法就是度量,度量一切:响应时间、用户思考时间、展示次数、API调用次数、点击率等,但这些并非需要度量的全部。找出所有能让你更进一步了解用户对功能看法的度量指标,对所有这些指标进行度量!

这种方法可以表示为如下形式:

3.2 自动化
自动化已经在上文2. 基础架构即代码一节进行了讨论。

在这里我想强调的是,在没有将与基础架构有关的所有供应和任务实现妥善、全面的自动化之前,持续交付根本无从谈起。

这一点很重要,因此有必要再重复一遍:环境的搭建和生产就绪版本软件的部署只需要一键点击,只需要运行一条命令,整个过程应该自动完成。否则根本无法设想能一天多次部署同一个软件。

在下文的3.5 零停机部署一节中,还将介绍有助于自动化交付的其他重要技术。
 
 
3.3 更频繁的部署
DevOps的信条在于:

“越是困难的事,需要更频繁地进行!”

敏捷思维中,困难任务更要迎难而上,更频繁地去做,这中想法非常重要。

自动化测试、重构、数据库迁移、面向客户的产品规格、规划、发布 - 所有这些活动都要尽可能频繁地进行。

原因主要有三点:
首先,随着要做的工作量逐渐增加,这些任务也会变的愈加困难,但如果能拆解为小块,则会变的相对容易些。以数据库迁移为例:一些涉及大量表的大规模数据库迁移工作很麻烦,容易出错。但如果一次只迁移一部分,则可以相对较容易地成功完成整个迁移任务。此外还可以轻松地将多个小规模的迁移任务安排成一定的序列,在将一个艰难的大任务拆解为一系列容易实现的小目标后,处理起来就简单多了。(这也是数据库重构的本质)第二个原因在于反馈。大部分敏捷思维关注的是设置反馈环路,借此让我们更快速地学习了解。反馈已经是极限编程(Extreme Programming)中一个非常重要,蕴含巨大价值的概念。在诸如软件开发等复杂流程中,我们需要更频繁地检查自己的最新进展,并进行必要的纠正。为此我们必须尽一切可能创建反馈环路,并提高反馈的频率,这样才能更快速地酌情做出调整。第三个原因是实践。对于任何活动,越频繁地从事就越能获得完善。实践可以帮助我们理清整个流程,让我们更熟悉代表有事情出错的征兆。只要认真琢磨自己从事的工作,就能提炼出近一步完善所需的实践。对于软件开发,也有可能实现一定程度的自动化。一旦有人将某件事做了多次,就可以更容易地确定该如何进行自动化,更重要的是,这样的人在对这些事情实现自动化方面将有更大的动机。此时自动化尤为重要,因为可以加快速度并降低出错的概率。




那么这就产生了一个问题:使用DevOps方法时,该选择怎样的交付频率?

这个问题没有标准答案,而是取决于产品、团队、市场、公司、用户、运维需求等各种因素。

我认为最佳答案应该是:如果不能实现至少每两周一次交付,或在冲刺阶段结束时交付,那么连敏捷都谈不上,DevOps又从何谈起呢?

DevOps鼓励我们尽可能频繁的交付。在我看来,你需要对团队进行培训,让他们能够做到尽可能频繁的交付。我在我的团队中使用的一种较为可行的方法是在QA环境中每天交付两次。交付过程是完全自动化的:每天两次,中午和午夜各一次,计算机启动起来,构建软件组件,运行集成测试,构建并启动虚拟机,部署软件组件,对其进行配置,运行功能测试等。
 
3.4 持续交付的前提需求
在改为使用持续交付方式之前,需要满足哪些要求?

我草拟的需求清单如下:
对软件组件的开发和平台的供应和设置进行持续集成。TDD - 测试驱动的开发。这一点还有待商榷……但始终还是需要面对:TDD是目前唯一能通过单元测试对代码和分支进行可接受程度覆盖的方法(单元测试使得问题的修复过程比集成测试或功能测试容易很多)。代码审阅!至少要进行代码审阅……如果能进行结对编程(Pair programming)当然就更好了。软件的持续审计 - 例如使用Sonar。在生产级环境实现功能测试的自动化。更强大的非功能测试自动化(性能、可用性等)。独立于目标环境的自动化打包和部署。
另外在管理重大功能和演进时,还需要具备健全的软件开发实践,例如零停机部署技术。
 
 
3.5 零停机部署
 
“零停机部署(ZDD)可在不中断现有服务的情况下部署新版系统。”

通过ZDD方式部署应用程序时,可在确保用户不会遭遇应用程序停机的前提下将新版应用引入生产环境。从用户和公司的角度来看,这应该是最佳部署方式,因为可以在不造成任何中断的情况下引入新功能并修复Bug。

下文将介绍4种技术:
功能开关(Feature Flipping)摸黑启动(Dark launch)蓝/绿部署(Blue/Green Deployment)金丝雀发布(Canari release)
 
功能开关
功能开关可供我们在软件运行过程中启用/禁用相应的功能。这种技术其实非常容易理解和使用:为生产版本提供一个能彻底禁用某项功能的配置,并只在对应功能彻底完工可以正常工作后才将该属性激活。

举例来说,若要将某个应用程序内的一个功能全局禁用或激活:
if Feature.isEnabled('new_awesome_feature')
# Do something new, cool and awesome
else
# Do old, same as always stuff
end或者如果要真对具体用户实现类似目的:

if Feature.isEnabled('new_awesome_feature', current_user)
# Do something new, cool and awesome
else
# Do old, same as always stuff
end 摸黑启动
摸黑启动的目的在于通过生产环境进行负载模拟!

在测试环境中,通常很难为软件模拟出成百上千万用户规模的负载。

如果不进行切实的负载测试,就无法知道基础架构能否承受住最终面临的压力。

此时并不需要模拟负载,而是可以实际部署这样的功能,然后看看在不影响可用性的前提下到底会发生什么。

Facebook将这种做法称之为功能的“摸黑启动”。

假设我们要将一个有5亿用户使用的静态搜索字段变成一个包含自动补全功能的字段,借此让用户可以更快速获得搜索结果。为该功能构建一个Web服务,并且希望模拟所有用户同时输入文字,向该Web服务生成大量请求的场景。

此时即可通过摸黑启动策略为现有表单添加一个隐藏的后台进程,通过该进程将输入的搜索关键字发送给新增的自动补全服务,并自动发送多次。

就算新增的Web服务彻底崩溃了,也不会造成任何实质损害。网页上可以完全忽略服务器错误。而就算该服务崩溃了,我们至少还可以对该服务进行优化和完善,直到能承受如此大量的负载。

这就等于在现实世界中进行了一次负载测试。
 
蓝/绿部署
蓝/绿部署是指为下一版产品构建另一个完整的生产环境。开发和运维团队可以在这个单独的生产环境中放心地构建下一版产品。

当下一版产品全部完成后,可以修改负载均衡器的配置,以透明的方式将用户自动重定向至新发布的下一版。

随后可将上一版的生产环境回收,用于构建下下一 查看全部
最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。
 
但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。
 
最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。
 本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158​  


目录


mulu.png


1. 简介​


DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。
woc.png

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。
 
1.1 管理信条
 
喜欢 | 作者 Jerome Kehrli ,译者 大愚若智 发布于 2017年4月24日. 估计阅读时间: 1 分钟 | 智能化运维、Serverless、DevOps......2017年有哪些最新运维技术趋势?CNUTCon即将为你揭秘!1 讨论分享到:微博微信FacebookTwitter有道云笔记邮件分享
稍后阅读
我的阅读清单

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。

相关厂商内容

聊聊容器编排与管理的挑战
智能化运维技术详解

机器学习模型训练的Kubernetes实践
京东物流系统自动化运维平台技术揭密
基于资产配置业务场景下的全链路监控平台

相关赞助商

CNUTCon全球运维技术大会,9月10日-9月11日,上海·光大会展中心大酒店,精彩内容抢先看

但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。

最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。

本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158

目录1. 简介 1.1 管理信条 1.2 一个典型的IT组织 1.3 运维人员测挫败感 1.4 基础架构自动化 1.5 DevOps:仅此一次,一颗神奇的银子弹 2. 基础架构即代码 2.1 概述 2.2 DevOps工具链 2.3 收益 3. 持续交付 3.1 从实践中学习 3.2 自动化 3.3 更频繁的部署 3.4 持续交付的前提需求 3.5 零停机部署 4. 协作 4.1 混乱之墙 4.2 软件开发流程 4.3 共享工具 4.4 协同工作 5. 结论1. 简介

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。

1.1 管理信条

IT管理这场战争的原动力到底是什么?换句话说,在软件开发项目中,管理工作首要的,以及最重要的目的是什么?

有什么想法吗?

我来提供一个线索吧:在建立一家初创公司时,最重要的事情是什么?

当然是要加快上市时间(TTM)

上市时间(即TTM)是指一件产品从最初的构思到最终可供用户使用或购买这一过程所需要的时间。对于产品很快会过时的行业,TTM是一个非常重要的概念。

在软件工程方面,所采用的方法、业务,以及具体技术几乎每年都会变化,因而TTM就成了一个非常重要的KPI(关键绩效指标)。

TTM通常也会被叫做前置时间(Lead Time)。

第一个问题在于,(很多人认为)在开发过程中TTM和产品质量是两个对立的属性。在下文可以看到,改善质量(进而提高稳定性)是运维人员的目的,而开发者的目的在于降低前置时间(进而提高TTM)。

请容我来解释一下。
IT组织或部门通常会通过两个关键的KPI进行评估:软件本身的质量,因而需要尽可能减少缺陷的数量;此外还有TTM,因而需要将业务构想(通常由业务用户提供)变为最终成果,并以尽可能快的速度提供给用户或客户。

这里的问题在于,大部分情况下这两个截然不同的目的是由两个不同团队提供支持的:负责构建软件的开发者,以及负责运行软件的运维人员。
 
1.2 一个典型的IT组织
在组织内部负责管理重要IT部门的典型IT组织通常看起来是这样的:
devopsharch.png

主要由于历史的原因(大部分运维人员来自硬件和电信业务领域),运维人员和开发者分属不同的组织结构分支。开发者属于研发部门,而运维人员大部分时候属于基础架构部门(或专门的运维部门)。

别忘了,他们有着不同的目的:
wofpeople.png

此外作为旁注,这两个团队有时候会使用不同的预算来运营。开发团队使用构建(Build)预算,运维团队使用运营(Run)预算。不同的预算,对控制权越来越高的需求,以及企业IT成本的缩水,这些因素结合在一起会进一步放大两个团队各自目的的对立性。

(依本人愚见,时至今日,随着人与人之间无时无刻随时随地进行的交互,以及由不同目的推动着企业和社会进行数字化转型,IT预算方面古老的“规划/构建/运行”框架已经不那么合理了,不过这又是另一回事了。)
 
1.3 运维人员测挫败感
接下来看看运维人员,一起看看典型的运维团队把大部分时间都花在哪里了:
sfd.png

来源:Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via James Hamilton [Amazon Web Services 
 
生产团队有将近一半(47%)的时间花在了与部署有关的工作中:
  • 执行实际的部署工作,或修复与部署工作有关的问题

这样的KPI其实相当疯狂,但实际上我们早就应该采纳。实际上早在40年前,计算机科学的“原始时代”就已涌现出运维团队,当时计算机主要运用在工业界,运维人员需要手工运行大量命令来执行自己的任务。为了履行职责,他们已经习惯于按照清单运行各种各样的命令或手工流程。

突然有一天他们终于意识到自己“总在做着相同的事情”,然而长达四十多年的工作过程中却几乎没人考虑过变革。

考虑到这一点你会发现,实在是太疯狂了。平均来说,运维人员将近一半的时间都在处理与部署有关的任务!

为了改变这种状况,必须考虑到两个最关键的需求:
  1. 通过自动化部署将目前这种手工任务所需的时间减少31%。
  2. 通过产业化措施(类似于通过XP和敏捷实现的软件开发产业化)将需要处理的与这些部署有关的问题减少16%。

 
1.4 基础架构自动化
在这方面也有一个相当富有启发性的统计结果:

以手工操作的数量所表示的成功部署概率。
gl.png

这些统计告诉我们:
  • 只需手工运行5条命令的情况下,成功部署的概率就已跌至86%。
  • 如需手工运行55条命令,成功部署的概率将跌至22%。
  • 如需手工运行100条命令,成功部署的概率将趋近于0(仅2%)!

成功部署意味着软件能够按照预期在生产环境中运行。未能成功部署意味着有东西出错,可能需要进行必要的分析才能了解部署过程中哪里出错,是否需要应用某种补丁,或需要修改某些配置。

因此让这一切实现自动化并不惜一切代价避免手工操作似乎是个好主意,对吧?

那么行业里这方面的现状是怎样的:
howmuch.png

(说实话,这个统计信息比较老了,是2013年的结果,相信现在的结果会有所不同)

然而这也可以让我们明确的知道,在基础架构自动化方面我们还有多远的路要走,并且DevOps的基本原则和实践依然是那么的重要。

网络巨头们当然会通过新的方法和实践及时满足自己的需求,他们早已开始构建自己的工程业务,而正是他们所确立的实践逐渐衍生出当今我们所熟悉的DevOps。

看看这些网络巨头们在这方面目前所处的位置吧,举几个例子:
  • Facebook有数千名开发和运维人员,成千上万台服务器。平均来说一位运维人员负责500台服务器(还认为自动化是可选的吗?)他们每天部署两次(环式部署,Deployment ring的概念)。
  • Flickr每天部署10次。
  • Netflix明确针对失败进行各种设计!他们的软件按照设计从最底层即可容忍系统失败,他们会在生产环境中进行全面的测试:每天通过随机关闭虚拟机的方式在生产环境中执行65000次失败测试…… 并确保这种情况下一切依然可以正常工作。

他们这种做法秘密何在?
 
 
1.5 DevOps:仅此一次,一颗神奇的银子弹
他们的秘密很简单:将敏捷扩展至生产端:
 
devops.png

喜欢 | 作者 Jerome Kehrli ,译者 大愚若智 发布于 2017年4月24日. 估计阅读时间: 1 分钟 | 智能化运维、Serverless、DevOps......2017年有哪些最新运维技术趋势?CNUTCon即将为你揭秘!1 讨论分享到:微博微信FacebookTwitter有道云笔记邮件分享
稍后阅读
我的阅读清单

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。

相关厂商内容

聊聊容器编排与管理的挑战
智能化运维技术详解

机器学习模型训练的Kubernetes实践
京东物流系统自动化运维平台技术揭密
基于资产配置业务场景下的全链路监控平台

相关赞助商

CNUTCon全球运维技术大会,9月10日-9月11日,上海·光大会展中心大酒店,精彩内容抢先看

但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。

最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。

本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158

目录1. 简介 1.1 管理信条 1.2 一个典型的IT组织 1.3 运维人员测挫败感 1.4 基础架构自动化 1.5 DevOps:仅此一次,一颗神奇的银子弹 2. 基础架构即代码 2.1 概述 2.2 DevOps工具链 2.3 收益 3. 持续交付 3.1 从实践中学习 3.2 自动化 3.3 更频繁的部署 3.4 持续交付的前提需求 3.5 零停机部署 4. 协作 4.1 混乱之墙 4.2 软件开发流程 4.3 共享工具 4.4 协同工作 5. 结论1. 简介

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。

1.1 管理信条

IT管理这场战争的原动力到底是什么?换句话说,在软件开发项目中,管理工作首要的,以及最重要的目的是什么?

有什么想法吗?

我来提供一个线索吧:在建立一家初创公司时,最重要的事情是什么?

当然是要加快上市时间(TTM)!

上市时间(即TTM)是指一件产品从最初的构思到最终可供用户使用或购买这一过程所需要的时间。对于产品很快会过时的行业,TTM是一个非常重要的概念。

在软件工程方面,所采用的方法、业务,以及具体技术几乎每年都会变化,因而TTM就成了一个非常重要的KPI(关键绩效指标)。

TTM通常也会被叫做前置时间(Lead Time)。

第一个问题在于,(很多人认为)在开发过程中TTM和产品质量是两个对立的属性。在下文可以看到,改善质量(进而提高稳定性)是运维人员的目的,而开发者的目的在于降低前置时间(进而提高TTM)。

请容我来解释一下。

IT组织或部门通常会通过两个关键的KPI进行评估:软件本身的质量,因而需要尽可能减少缺陷的数量;此外还有TTM,因而需要将业务构想(通常由业务用户提供)变为最终成果,并以尽可能快的速度提供给用户或客户。

这里的问题在于,大部分情况下这两个截然不同的目的是由两个不同团队提供支持的:负责构建软件的开发者,以及负责运行软件的运维人员。

1.2 一个典型的IT组织

在组织内部负责管理重要IT部门的典型IT组织通常看起来是这样的:

主要由于历史的原因(大部分运维人员来自硬件和电信业务领域),运维人员和开发者分属不同的组织结构分支。开发者属于研发部门,而运维人员大部分时候属于基础架构部门(或专门的运维部门)。

别忘了,他们有着不同的目的:

此外作为旁注,这两个团队有时候会使用不同的预算来运营。开发团队使用构建(Build)预算,运维团队使用运营(Run)预算。不同的预算,对控制权越来越高的需求,以及企业IT成本的缩水,这些因素结合在一起会进一步放大两个团队各自目的的对立性。

(依本人愚见,时至今日,随着人与人之间无时无刻随时随地进行的交互,以及由不同目的推动着企业和社会进行数字化转型,IT预算方面古老的“规划/构建/运行”框架已经不那么合理了,不过这又是另一回事了。)

1.3 运维人员测挫败感

接下来看看运维人员,一起看看典型的运维团队把大部分时间都花在哪里了:

(来源:Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via James Hamilton [Amazon Web Services]

生产团队有将近一半(47%)的时间花在了与部署有关的工作中:

执行实际的部署工作,或
修复与部署工作有关的问题

这样的KPI其实相当疯狂,但实际上我们早就应该采纳。实际上早在40年前,计算机科学的“原始时代”就已涌现出运维团队,当时计算机主要运用在工业界,运维人员需要手工运行大量命令来执行自己的任务。为了履行职责,他们已经习惯于按照清单运行各种各样的命令或手工流程。

突然有一天他们终于意识到自己“总在做着相同的事情”,然而长达四十多年的工作过程中却几乎没人考虑过变革。

考虑到这一点你会发现,实在是太疯狂了。平均来说,运维人员将近一半的时间都在处理与部署有关的任务!

为了改变这种状况,必须考虑到两个最关键的需求:

通过自动化部署将目前这种手工任务所需的时间减少31%。
通过产业化措施(类似于通过XP和敏捷实现的软件开发产业化)将需要处理的与这些部署有关的问题减少16%。

1.4 基础架构自动化

在这方面也有一个相当富有启发性的统计结果:

以手工操作的数量所表示的成功部署概率。

这些统计告诉我们:

只需手工运行5条命令的情况下,成功部署的概率就已跌至86%。
如需手工运行55条命令,成功部署的概率将跌至22%。
如需手工运行100条命令,成功部署的概率将趋近于0(仅2%)!

成功部署意味着软件能够按照预期在生产环境中运行。未能成功部署意味着有东西出错,可能需要进行必要的分析才能了解部署过程中哪里出错,是否需要应用某种补丁,或需要修改某些配置。

因此让这一切实现自动化并不惜一切代价避免手工操作似乎是个好主意,对吧?

那么行业里这方面的现状是怎样的:

(来源:IT Ops & DevOps Productivity Report 2013 - Rebellabs )

(说实话,这个统计信息比较老了,是2013年的结果,相信现在的结果会有所不同)

然而这也可以让我们明确的知道,在基础架构自动化方面我们还有多远的路要走,并且DevOps的基本原则和实践依然是那么的重要。

网络巨头们当然会通过新的方法和实践及时满足自己的需求,他们早已开始构建自己的工程业务,而正是他们所确立的实践逐渐衍生出当今我们所熟悉的DevOps。

看看这些网络巨头们在这方面目前所处的位置吧,举几个例子:

Facebook有数千名开发和运维人员,成千上万台服务器。平均来说一位运维人员负责500台服务器(还认为自动化是可选的吗?)他们每天部署两次(环式部署,Deployment ring的概念)。
Flickr每天部署10次。
Netflix明确针对失败进行各种设计!他们的软件按照设计从最底层即可容忍系统失败,他们会在生产环境中进行全面的测试:每天通过随机关闭虚拟机的方式在生产环境中执行65000次失败测试…… 并确保这种情况下一切依然可以正常工作。

他们这种做法秘密何在?

1.5 DevOps:仅此一次,一颗神奇的银子弹

他们的秘密很简单:将敏捷扩展至生产端:

DevOps的共存主要是为了扩展敏捷开发实践,进一步完善软件变更在构建、验证、部署、交付等阶段中的流动,同时通过软件应用程序的全面所有权予力跨职能团队完成从设计到生产支持等各环节的工作。

DevOps鼓励软件开发者和IT运维人员之间所进行的沟通、协作、集成和自动化,借此有助于改善双方在交付软件过程中的速度和质量。

DevOps团队更侧重于通过标准化开发环境和自动化交付流程改善交付工作的可预测性、效率、安全性,以及可维护性。理想情况下,DevOps可以为开发者提供更可控的生产环境,帮助他们更好地理解生产基础架构。

DevOps鼓励团队自主进行自己应用程序的构建、验证、交付和支持。
那么核心原则到底是什么?
icc.png

下文将介绍最重要的三大基本原则。
 
2. 基础架构即代码
人总会犯错,因为人脑实在是不擅长处理重复性的任务,相比Shell脚本,人类的速度实在是太慢了。毕竟我们都是人类,因此有必要像处理代码那样考虑和处理有关基础架构的概念!

基础架构即代码(IaC)是大部分通用DevOps实践的前提要求,例如版本控制、代码审阅、持续集成、自动化测试。这一概念涉及计算基础架构(容器、虚拟机、物理机、软件安装等)的管理和供应,以及通过机器可处理的定义文件或脚本对其进行的配置,交互式配置工具和手工命令的使用已经不合时宜了。

这一原则对DevOps的重要性怎么强调都不为过,它可以真正将软件开发相关的实践应用给服务器和基础架构。

云计算使得复杂的IT部署可以继续效仿传统物理拓扑。我们可以相对轻松地对复杂虚拟网络、存储和服务器的构建实现自动化。服务器环境的方方面面,上至基础架构下至操作系统设置,均可编码并存储至版本控制仓库。
 
2.1 概述
以非常概括的方式来看,基础架构和运维所需实现的自动化程度可通过下图这种架构来表示:
 
asc.png

上述架构图中作为示例的工具主要面向不同层的构建工作,实际上DevOps工具链的作用远不止如此。

我觉得在这里可以略微深入地谈谈DevOps的工具链了。
 
2.2 DevOps工具链
DevOps实际是一种文化上的变迁,代表了开发、运维、测试等环节之间的协作,因此DevOps工具是非常多种多样的,甚至可以由多种工具组成一个完整的DevOps工具链。此类工具可以应用于一种或多种类别,并可体现出软件开发和交付过程的不同阶段:
  • 编码:代码开发和审阅,版本控制工具、代码合并工具
  • 构建:持续集成工具、构建状态统计工具
  • 测试:通过测试和结果确定绩效的工具
  • 打包:成品仓库、应用程序部署前暂存
  • 发布:变更管理、发布审批、发布自动化
  • 配置:基础架构配置和部署,基础架构即代码工具
  • 监视:应用程序性能监视、最终用户体验

虽然可用工具有很多,但其中一些环节是组织内部应用DevOps工具链不可或缺的。

诸如Docker(容器化)、Jenkins(持续集成)、Puppet(基础架构构建)、Vagrant(虚拟化平台)等常用、广泛使用的工具都是2016年的DevOps热门工具。
 
基础架构组件的版本控制、持续集成和自动化测试
 
基础架构的版本控制能力(而非基础架构的构建脚本或配置文件)及对其进行自动化测试的能力极其重要。

DevOps最终会将30年前软件工程领域所采用的同一套XP实践带至生产端。

此外基础架构元素应该能向软件交付物一样进行持续集成
 
 
2.3 收益
DevOps的收益有很多,包括但不限于:
  • 可重复性与可靠性:时至今日,构建生产用计算机只需要运行脚本或必要的puppet命令即可。通过恰当地使用Docker容器或Vagrant虚拟机,只需运行一条命令即可配置好包含操作系统层以及所需软件和配置的生产用计算机。当然,随着各种变更或软件开发、持续集成,并自动测试,这套构建脚本或机制也会进行持续集成。

最终幸亏有了XP或敏捷,我们在软件开发端所使用的同一套实践也能让运维端获益。
  • 生产力:一键部署,一键供应,一键创建新环境……整个生产环境可以通过一条命令或一键点击的方式创建。这样的一条命令也许会运行长达数小时,但在这过程中运维人员可以从事其他更有趣的工作,而无需等待一条命令执行完毕后继续输入下一条命令,毕竟这样的过程有时候可能需要花费几天时间才能完成……
  • 恢复时间:一键点击即可恢复生产环境,就是这么简单。
  • 确保基础架构的同质:彻底避免运维人员每次构建环境或安装软件时最终获得的结果与预期有所差异,这是确保基础架构绝对同质(Homogeneous)并且可再现的唯一可行方法。以此为基础,通过对脚本或Puppet配置文件使用版本控制机制,我们甚至可以重建出与上周、上个月,或软件特定版本发布时完全一致的生产环境。
  • 维持整齐划一的标准:基础架构标准甚至可以不复存在,代码本身就是标准。
  • 让开发者自行完成大部分工作:如果开发者自己突然可以在自己的基础架构上一键点击重建生产环境,他们也就可以自行完成很多与生产环境有关的任务,例如更好地理解生产失败,提供更恰当的配置,实现部署脚本等。

这只是我个人感觉IaC可提供的部分收益,相信还有很多其他收益。
 
 
3. 持续交付
 
持续交付是一种可以帮助团队以更短的周期交付软件的方法,该方法确保了团队可以在任何时间发布出可靠的软件。该方法意在以更快速度更高频率进行软件的构建、测试和发布。

通过对生产环境中的应用程序进行更高频次的增量更新,这种方法有助于降低交付变更过程中涉及的成本、时间和风险。足够简单直接并且可重复的部署流程对持续交付而言至关重要。

注意:持续交付 ≠ 持续部署 - 有时候很多人会把持续交付误认为成持续部署。持续部署是指每个变更可以自动部署到生产环境。持续交付是指团队确保每个变更可以部署至生产环境,但也许并不需要实际部署,这通常可能是出于业务方面的原因。只有成功实现持续交付的前提下,才能进行持续部署。

持续交付的主要想法在于:
  • 部署越频繁,对部署流程就会越熟悉,自动化机制就能获得更好的结果。如果同一件事每天需要执行3次,很快你将变的无比娴熟,但很快也会因为日复一日解决同样的问题而感到厌烦。
  • 部署越频繁,所部属的变更集就越微不足道,而这些微不足道的内容最有可能出错,甚至可能导致丢失对整个变更集的控制力。
  • 部署越频繁,TTR(修复/解决所需时间)指标就会越出色,从业务用户处获得有关功能的各类反馈的速度越快,作出改进以便完美满足对方需求的过程也会越简单(这方面TTR与TTM其实非常相似)。

ttr.png

但持续交付并不仅仅是尽可能频繁地构建可发布、生产就绪版本的软件产品那么简单。持续交付包含3个关键实践:
  • 从实践中学习
  • 自动化
  • 更频繁的部署

 
3.1 从实践中学习
 
持续交付的关键在于要能从实践中学习。真理并不存在于开发团队中,而在于业务用户中。然而无论花多长时间,没人能真正清楚地表达自己的想法,或者将自己的想法用清晰的文档概括出来。也正是因此,敏捷方法论强调将功能提供给用户,并不惜一切代价从用户处获得尽可能多的反馈。

持续交付与持续部署类似,需要尽可能减少前置时间,这也是尽快从用户处获得“真理”的关键。

但真理绝对不会来自正规形式的用户反馈。我们绝不能尽信自己的用户或寄希望于通过正规形式的反馈了解用户。我们只能相信自己的度量。

痴迷于度量是精益创业(Lean Startup)活动中一个重要的概念,但这一概念对DevOps同样重要。我们应该度量一切!确定最恰当的度量指标可以让团队了解某种方法最终能否成功或失败,了解怎样做可以获得更好的结果,以及哪些最成功的做法同时也蕴含着一定的风险。为了帮助团队做出更明智的决策,在确定要衡量的指标时,一定要抱着“宁多勿少”的原则。

不需要“考虑”,只需要“知道”!“知道”的唯一方法就是度量,度量一切:响应时间、用户思考时间、展示次数、API调用次数、点击率等,但这些并非需要度量的全部。找出所有能让你更进一步了解用户对功能看法的度量指标,对所有这些指标进行度量!

这种方法可以表示为如下形式:
idmcc.png

 
 
喜欢 | 作者 Jerome Kehrli ,译者 大愚若智 发布于 2017年4月24日. 估计阅读时间: 1 分钟 | 智能化运维、Serverless、DevOps......2017年有哪些最新运维技术趋势?CNUTCon即将为你揭秘!1 讨论分享到:微博微信FacebookTwitter有道云笔记邮件分享
稍后阅读
我的阅读清单

最近我阅读了很多有关DevOps的文章,其中一些非常有趣,然而一些内容也很欠考虑。貌似很多人越来越坚定地在DevOps与chef、puppet或Docker容器的熟练运用方面划了等号。对此我有不同看法。DevOps的范畴远远超过puppet或Docker等工具。

这样的看法甚至让我感觉有些气愤。DevOps在我看来极为重要,过去15年来,我一直在大型机构,主要是大型金融机构中从事工程业务。DevOps是一种非常重要的方法论,该方法将解决一些最大型问题的基本原则和实践恰如其分地融为一体,很好地解决了此类机构的软件开发项目中一种最令人感觉悲凉的失败要素:开发者和运维人员之间的混乱之墙。

请不要误会我的这种观点,除了某些XP实践,大部分此类大型机构对敏捷开发方法论的运用还有很长的路要走,同时还有很多其他原因会导致软件开发项目的失败或延误。

相关厂商内容

聊聊容器编排与管理的挑战
智能化运维技术详解

机器学习模型训练的Kubernetes实践
京东物流系统自动化运维平台技术揭密
基于资产配置业务场景下的全链路监控平台

相关赞助商

CNUTCon全球运维技术大会,9月10日-9月11日,上海·光大会展中心大酒店,精彩内容抢先看

但在我看来,混乱之墙目前依然是他们所面临的最令人沮丧、最浪费时间、同时也相当愚蠢的问题。

与其独自生闷气,我觉得不如说点更实在的东西,写一篇尽可能精准的文章,向大家介绍DevOps到底是什么,能为我们带来什么。长话短说,DevOps并不是某一套工具。DevOps是一种方法论,其中包含一系列基本原则和实践,仅此而已。而所用的工具(或者说“工具链”吧,毕竟用于为这些实践提供支持的工具集有着极高的扩展性)只是为了对这样的实践提供支持。

最终来说,这些工具本身并不重要。相比两年前,目前的DevOps工具链已经产生了翻天覆地的变化,可想而知,两年后还会产生更大的差异。不过这并不重要。重要的是能够合理地理解这些基本原则和实践。

本文并不准备介绍某些工具链,甚至完全不会提到这些工具。网上讨论DevOps工具链的文章已经太多了。我想在本文中谈谈最基本的原则和实践,它们的主要目的,毕竟这些才是对我而言最重要的。

DevOps是一种方法论,归纳总结了面临独一无二的机遇和强有力需求的网络巨头们,结合自身业务本质构思出全新工作方式的过程中所采用的实践,而他们的业务需求也很直接:以史无前例的节奏对自己的系统进行演进,有时候可能还需要以天为单位对系统或业务进行扩展。

虽然DevOps对初创公司来说很明显是不可或缺的,但我认为那些有着庞大的老式IT部门的大企业才是能从这些基本原则和实践中获得最大收益的。本文将试图解释得出这个结论的原因和实现方法。

本文的部分内容已发布为Slideshare演示幻灯片,可在这里浏览:http://www.slideshare.net/JrmeKehrli/devops-explained-72091158

目录1. 简介 1.1 管理信条 1.2 一个典型的IT组织 1.3 运维人员测挫败感 1.4 基础架构自动化 1.5 DevOps:仅此一次,一颗神奇的银子弹 2. 基础架构即代码 2.1 概述 2.2 DevOps工具链 2.3 收益 3. 持续交付 3.1 从实践中学习 3.2 自动化 3.3 更频繁的部署 3.4 持续交付的前提需求 3.5 零停机部署 4. 协作 4.1 混乱之墙 4.2 软件开发流程 4.3 共享工具 4.4 协同工作 5. 结论1. 简介

DevOps所关注的不是工具本身,也不是对chef或Docker的掌握程度。DevOps是一种方法论,是一系列可以帮助开发者和运维人员在实现各自目标(Goal)的前提下,向自己的客户或用户交付最大化价值及最高质量成果的基本原则和实践。

开发者和运维人员之间最大的问题在于:虽然都是企业中大型IT部门不可或缺的,但他们有着截然不同的目的(Objective)。

开发者和运维人员之间目的上的差异就叫做混乱之墙。下文会介绍这个概念的准确定义,以及为什么我认为这种状况很严峻并且很糟糕。

DevOps是一种融合了一系列基本原则和实践的方法论(并从这些实践中派生出了各种工具),意在帮助这些人员向着一个统一的共同目的努力:尽可能为公司提供更多价值。

令人惊奇的是,这个问题竟然有一个非常简单的“银子弹”:让生产端变得敏捷起来!

而这恰恰正是DevOps所要达成的唯一目标!

但在进一步讨论这一点之前,首先需要谈谈其他几件事。

1.1 管理信条

IT管理这场战争的原动力到底是什么?换句话说,在软件开发项目中,管理工作首要的,以及最重要的目的是什么?

有什么想法吗?

我来提供一个线索吧:在建立一家初创公司时,最重要的事情是什么?

当然是要加快上市时间(TTM)!

上市时间(即TTM)是指一件产品从最初的构思到最终可供用户使用或购买这一过程所需要的时间。对于产品很快会过时的行业,TTM是一个非常重要的概念。

在软件工程方面,所采用的方法、业务,以及具体技术几乎每年都会变化,因而TTM就成了一个非常重要的KPI(关键绩效指标)。

TTM通常也会被叫做前置时间(Lead Time)。

第一个问题在于,(很多人认为)在开发过程中TTM和产品质量是两个对立的属性。在下文可以看到,改善质量(进而提高稳定性)是运维人员的目的,而开发者的目的在于降低前置时间(进而提高TTM)。

请容我来解释一下。

IT组织或部门通常会通过两个关键的KPI进行评估:软件本身的质量,因而需要尽可能减少缺陷的数量;此外还有TTM,因而需要将业务构想(通常由业务用户提供)变为最终成果,并以尽可能快的速度提供给用户或客户。

这里的问题在于,大部分情况下这两个截然不同的目的是由两个不同团队提供支持的:负责构建软件的开发者,以及负责运行软件的运维人员。

1.2 一个典型的IT组织

在组织内部负责管理重要IT部门的典型IT组织通常看起来是这样的:

主要由于历史的原因(大部分运维人员来自硬件和电信业务领域),运维人员和开发者分属不同的组织结构分支。开发者属于研发部门,而运维人员大部分时候属于基础架构部门(或专门的运维部门)。

别忘了,他们有着不同的目的:

此外作为旁注,这两个团队有时候会使用不同的预算来运营。开发团队使用构建(Build)预算,运维团队使用运营(Run)预算。不同的预算,对控制权越来越高的需求,以及企业IT成本的缩水,这些因素结合在一起会进一步放大两个团队各自目的的对立性。

(依本人愚见,时至今日,随着人与人之间无时无刻随时随地进行的交互,以及由不同目的推动着企业和社会进行数字化转型,IT预算方面古老的“规划/构建/运行”框架已经不那么合理了,不过这又是另一回事了。)

1.3 运维人员测挫败感

接下来看看运维人员,一起看看典型的运维团队把大部分时间都花在哪里了:

(来源:Study from Deepak Patil [Microsoft Global Foundation Services] in 2006, via James Hamilton [Amazon Web Services]

生产团队有将近一半(47%)的时间花在了与部署有关的工作中:

执行实际的部署工作,或
修复与部署工作有关的问题

这样的KPI其实相当疯狂,但实际上我们早就应该采纳。实际上早在40年前,计算机科学的“原始时代”就已涌现出运维团队,当时计算机主要运用在工业界,运维人员需要手工运行大量命令来执行自己的任务。为了履行职责,他们已经习惯于按照清单运行各种各样的命令或手工流程。

突然有一天他们终于意识到自己“总在做着相同的事情”,然而长达四十多年的工作过程中却几乎没人考虑过变革。

考虑到这一点你会发现,实在是太疯狂了。平均来说,运维人员将近一半的时间都在处理与部署有关的任务!

为了改变这种状况,必须考虑到两个最关键的需求:

通过自动化部署将目前这种手工任务所需的时间减少31%。
通过产业化措施(类似于通过XP和敏捷实现的软件开发产业化)将需要处理的与这些部署有关的问题减少16%。

1.4 基础架构自动化

在这方面也有一个相当富有启发性的统计结果:

以手工操作的数量所表示的成功部署概率。

这些统计告诉我们:

只需手工运行5条命令的情况下,成功部署的概率就已跌至86%。
如需手工运行55条命令,成功部署的概率将跌至22%。
如需手工运行100条命令,成功部署的概率将趋近于0(仅2%)!

成功部署意味着软件能够按照预期在生产环境中运行。未能成功部署意味着有东西出错,可能需要进行必要的分析才能了解部署过程中哪里出错,是否需要应用某种补丁,或需要修改某些配置。

因此让这一切实现自动化并不惜一切代价避免手工操作似乎是个好主意,对吧?

那么行业里这方面的现状是怎样的:

(来源:IT Ops & DevOps Productivity Report 2013 - Rebellabs )

(说实话,这个统计信息比较老了,是2013年的结果,相信现在的结果会有所不同)

然而这也可以让我们明确的知道,在基础架构自动化方面我们还有多远的路要走,并且DevOps的基本原则和实践依然是那么的重要。

网络巨头们当然会通过新的方法和实践及时满足自己的需求,他们早已开始构建自己的工程业务,而正是他们所确立的实践逐渐衍生出当今我们所熟悉的DevOps。

看看这些网络巨头们在这方面目前所处的位置吧,举几个例子:

Facebook有数千名开发和运维人员,成千上万台服务器。平均来说一位运维人员负责500台服务器(还认为自动化是可选的吗?)他们每天部署两次(环式部署,Deployment ring的概念)。
Flickr每天部署10次。
Netflix明确针对失败进行各种设计!他们的软件按照设计从最底层即可容忍系统失败,他们会在生产环境中进行全面的测试:每天通过随机关闭虚拟机的方式在生产环境中执行65000次失败测试…… 并确保这种情况下一切依然可以正常工作。

他们这种做法秘密何在?

1.5 DevOps:仅此一次,一颗神奇的银子弹

他们的秘密很简单:将敏捷扩展至生产端:

DevOps的共存主要是为了扩展敏捷开发实践,进一步完善软件变更在构建、验证、部署、交付等阶段中的流动,同时通过软件应用程序的全面所有权予力跨职能团队完成从设计到生产支持等各环节的工作。

DevOps鼓励软件开发者和IT运维人员之间所进行的沟通、协作、集成和自动化,借此有助于改善双方在交付软件过程中的速度和质量。

DevOps团队更侧重于通过标准化开发环境和自动化交付流程改善交付工作的可预测性、效率、安全性,以及可维护性。理想情况下,DevOps可以为开发者提供更可控的生产环境,帮助他们更好地理解生产基础架构。

DevOps鼓励团队自主进行自己应用程序的构建、验证、交付和支持。

那么核心原则到底是什么?

下文将介绍最重要的三大基本原则。

2. 基础架构即代码

人总会犯错,因为人脑实在是不擅长处理重复性的任务,相比Shell脚本,人类的速度实在是太慢了。毕竟我们都是人类,因此有必要像处理代码那样考虑和处理有关基础架构的概念!

基础架构即代码(IaC)是大部分通用DevOps实践的前提要求,例如版本控制、代码审阅、持续集成、自动化测试。这一概念涉及计算基础架构(容器、虚拟机、物理机、软件安装等)的管理和供应,以及通过机器可处理的定义文件或脚本对其进行的配置,交互式配置工具和手工命令的使用已经不合时宜了。

这一原则对DevOps的重要性怎么强调都不为过,它可以真正将软件开发相关的实践应用给服务器和基础架构。

云计算使得复杂的IT部署可以继续效仿传统物理拓扑。我们可以相对轻松地对复杂虚拟网络、存储和服务器的构建实现自动化。服务器环境的方方面面,上至基础架构下至操作系统设置,均可编码并存储至版本控制仓库。

2.1 概述

以非常概括的方式来看,基础架构和运维所需实现的自动化程度可通过下图这种架构来表示:

上述架构图中作为示例的工具主要面向不同层的构建工作,实际上DevOps工具链的作用远不止如此。

我觉得在这里可以略微深入地谈谈DevOps的工具链了。

2.2 DevOps工具链

DevOps实际是一种文化上的变迁,代表了开发、运维、测试等环节之间的协作,因此DevOps工具是非常多种多样的,甚至可以由多种工具组成一个完整的DevOps工具链。此类工具可以应用于一种或多种类别,并可体现出软件开发和交付过程的不同阶段:

编码:代码开发和审阅,版本控制工具、代码合并工具
构建:持续集成工具、构建状态统计工具
测试:通过测试和结果确定绩效的工具
打包:成品仓库、应用程序部署前暂存
发布:变更管理、发布审批、发布自动化
配置:基础架构配置和部署,基础架构即代码工具
监视:应用程序性能监视、最终用户体验

虽然可用工具有很多,但其中一些环节是组织内部应用DevOps工具链不可或缺的。

诸如Docker(容器化)、Jenkins(持续集成)、Puppet(基础架构构建)、Vagrant(虚拟化平台)等常用、广泛使用的工具都是2016年的DevOps热门工具。

基础架构组件的版本控制、持续集成和自动化测试

基础架构的版本控制能力(而非基础架构的构建脚本或配置文件)及对其进行自动化测试的能力极其重要。

DevOps最终会将30年前软件工程领域所采用的同一套XP实践带至生产端。

此外基础架构元素应该能向软件交付物一样进行持续集成。

2.3 收益

DevOps的收益有很多,包括但不限于:

可重复性与可靠性:时至今日,构建生产用计算机只需要运行脚本或必要的puppet命令即可。通过恰当地使用Docker容器或Vagrant虚拟机,只需运行一条命令即可配置好包含操作系统层以及所需软件和配置的生产用计算机。当然,随着各种变更或软件开发、持续集成,并自动测试,这套构建脚本或机制也会进行持续集成。

最终幸亏有了XP或敏捷,我们在软件开发端所使用的同一套实践也能让运维端获益。

生产力:一键部署,一键供应,一键创建新环境……整个生产环境可以通过一条命令或一键点击的方式创建。这样的一条命令也许会运行长达数小时,但在这过程中运维人员可以从事其他更有趣的工作,而无需等待一条命令执行完毕后继续输入下一条命令,毕竟这样的过程有时候可能需要花费几天时间才能完成……
恢复时间!:一键点击即可恢复生产环境,就是这么简单。
确保基础架构的同质:彻底避免运维人员每次构建环境或安装软件时最终获得的结果与预期有所差异,这是确保基础架构绝对同质(Homogeneous)并且可再现的唯一可行方法。以此为基础,通过对脚本或Puppet配置文件使用版本控制机制,我们甚至可以重建出与上周、上个月,或软件特定版本发布时完全一致的生产环境。
维持整齐划一的标准:基础架构标准甚至可以不复存在,代码本身就是标准。
让开发者自行完成大部分工作:如果开发者自己突然可以在自己的基础架构上一键点击重建生产环境,他们也就可以自行完成很多与生产环境有关的任务,例如更好地理解生产失败,提供更恰当的配置,实现部署脚本等。

这只是我个人感觉IaC可提供的部分收益,相信还有很多其他收益。

3. 持续交付

持续交付是一种可以帮助团队以更短的周期交付软件的方法,该方法确保了团队可以在任何时间发布出可靠的软件。该方法意在以更快速度更高频率进行软件的构建、测试和发布。

通过对生产环境中的应用程序进行更高频次的增量更新,这种方法有助于降低交付变更过程中涉及的成本、时间和风险。足够简单直接并且可重复的部署流程对持续交付而言至关重要。

注意:持续交付 ≠ 持续部署 - 有时候很多人会把持续交付误认为成持续部署。持续部署是指每个变更可以自动部署到生产环境。持续交付是指团队确保每个变更可以部署至生产环境,但也许并不需要实际部署,这通常可能是出于业务方面的原因。只有成功实现持续交付的前提下,才能进行持续部署。

持续交付的主要想法在于:

部署越频繁,对部署流程就会越熟悉,自动化机制就能获得更好的结果。如果同一件事每天需要执行3次,很快你将变的无比娴熟,但很快也会因为日复一日解决同样的问题而感到厌烦。
部署越频繁,所部属的变更集就越微不足道,而这些微不足道的内容最有可能出错,甚至可能导致丢失对整个变更集的控制力。
部署越频繁,TTR(修复/解决所需时间)指标就会越出色,从业务用户处获得有关功能的各类反馈的速度越快,作出改进以便完美满足对方需求的过程也会越简单(这方面TTR与TTM其实非常相似)。

(来源:Ops Meta-Metrics: The Currency You Pay For Change )

但持续交付并不仅仅是尽可能频繁地构建可发布、生产就绪版本的软件产品那么简单。持续交付包含3个关键实践:

从实践中学习
自动化
更频繁的部署

3.1 从实践中学习

持续交付的关键在于要能从实践中学习。真理并不存在于开发团队中,而在于业务用户中。然而无论花多长时间,没人能真正清楚地表达自己的想法,或者将自己的想法用清晰的文档概括出来。也正是因此,敏捷方法论强调将功能提供给用户,并不惜一切代价从用户处获得尽可能多的反馈。

持续交付与持续部署类似,需要尽可能减少前置时间,这也是尽快从用户处获得“真理”的关键。

但真理绝对不会来自正规形式的用户反馈。我们绝不能尽信自己的用户或寄希望于通过正规形式的反馈了解用户。我们只能相信自己的度量。

痴迷于度量是精益创业(Lean Startup)活动中一个重要的概念,但这一概念对DevOps同样重要。我们应该度量一切!确定最恰当的度量指标可以让团队了解某种方法最终能否成功或失败,了解怎样做可以获得更好的结果,以及哪些最成功的做法同时也蕴含着一定的风险。为了帮助团队做出更明智的决策,在确定要衡量的指标时,一定要抱着“宁多勿少”的原则。

不需要“考虑”,只需要“知道”!“知道”的唯一方法就是度量,度量一切:响应时间、用户思考时间、展示次数、API调用次数、点击率等,但这些并非需要度量的全部。找出所有能让你更进一步了解用户对功能看法的度量指标,对所有这些指标进行度量!

这种方法可以表示为如下形式:

3.2 自动化
自动化已经在上文2. 基础架构即代码一节进行了讨论。

在这里我想强调的是,在没有将与基础架构有关的所有供应和任务实现妥善、全面的自动化之前,持续交付根本无从谈起。

这一点很重要,因此有必要再重复一遍:环境的搭建和生产就绪版本软件的部署只需要一键点击,只需要运行一条命令,整个过程应该自动完成。否则根本无法设想能一天多次部署同一个软件。

在下文的3.5 零停机部署一节中,还将介绍有助于自动化交付的其他重要技术。
 
 
3.3 更频繁的部署
DevOps的信条在于:

“越是困难的事,需要更频繁地进行!”

敏捷思维中,困难任务更要迎难而上,更频繁地去做,这中想法非常重要。

自动化测试、重构、数据库迁移、面向客户的产品规格、规划、发布 - 所有这些活动都要尽可能频繁地进行。

原因主要有三点:
  • 首先,随着要做的工作量逐渐增加,这些任务也会变的愈加困难,但如果能拆解为小块,则会变的相对容易些。以数据库迁移为例:一些涉及大量表的大规模数据库迁移工作很麻烦,容易出错。但如果一次只迁移一部分,则可以相对较容易地成功完成整个迁移任务。此外还可以轻松地将多个小规模的迁移任务安排成一定的序列,在将一个艰难的大任务拆解为一系列容易实现的小目标后,处理起来就简单多了。(这也是数据库重构的本质)
  • 第二个原因在于反馈。大部分敏捷思维关注的是设置反馈环路,借此让我们更快速地学习了解。反馈已经是极限编程(Extreme Programming)中一个非常重要,蕴含巨大价值的概念。在诸如软件开发等复杂流程中,我们需要更频繁地检查自己的最新进展,并进行必要的纠正。为此我们必须尽一切可能创建反馈环路,并提高反馈的频率,这样才能更快速地酌情做出调整。
  • 第三个原因是实践。对于任何活动,越频繁地从事就越能获得完善。实践可以帮助我们理清整个流程,让我们更熟悉代表有事情出错的征兆。只要认真琢磨自己从事的工作,就能提炼出近一步完善所需的实践。对于软件开发,也有可能实现一定程度的自动化。一旦有人将某件事做了多次,就可以更容易地确定该如何进行自动化,更重要的是,这样的人在对这些事情实现自动化方面将有更大的动机。此时自动化尤为重要,因为可以加快速度并降低出错的概率。

change.png

那么这就产生了一个问题:使用DevOps方法时,该选择怎样的交付频率?

这个问题没有标准答案,而是取决于产品、团队、市场、公司、用户、运维需求等各种因素。

我认为最佳答案应该是:如果不能实现至少每两周一次交付,或在冲刺阶段结束时交付,那么连敏捷都谈不上,DevOps又从何谈起呢?

DevOps鼓励我们尽可能频繁的交付。在我看来,你需要对团队进行培训,让他们能够做到尽可能频繁的交付。我在我的团队中使用的一种较为可行的方法是在QA环境中每天交付两次。交付过程是完全自动化的:每天两次,中午和午夜各一次,计算机启动起来,构建软件组件,运行集成测试,构建并启动虚拟机,部署软件组件,对其进行配置,运行功能测试等。
 
3.4 持续交付的前提需求
在改为使用持续交付方式之前,需要满足哪些要求?

我草拟的需求清单如下:
  • 对软件组件的开发和平台的供应和设置进行持续集成。
  • TDD - 测试驱动的开发。这一点还有待商榷……但始终还是需要面对:TDD是目前唯一能通过单元测试对代码和分支进行可接受程度覆盖的方法(单元测试使得问题的修复过程比集成测试或功能测试容易很多)。
  • 代码审阅!至少要进行代码审阅……如果能进行结对编程(Pair programming)当然就更好了。
  • 软件的持续审计 - 例如使用Sonar。
  • 在生产级环境实现功能测试的自动化。
  • 更强大的非功能测试自动化(性能、可用性等)。
  • 独立于目标环境的自动化打包和部署。

另外在管理重大功能和演进时,还需要具备健全的软件开发实践,例如零停机部署技术。
 
 
3.5 零停机部署
 
“零停机部署(ZDD)可在不中断现有服务的情况下部署新版系统。”

通过ZDD方式部署应用程序时,可在确保用户不会遭遇应用程序停机的前提下将新版应用引入生产环境。从用户和公司的角度来看,这应该是最佳部署方式,因为可以在不造成任何中断的情况下引入新功能并修复Bug。

下文将介绍4种技术:
  • 功能开关(Feature Flipping)
  • 摸黑启动(Dark launch)
  • 蓝/绿部署(Blue/Green Deployment)
  • 金丝雀发布(Canari release)

 
功能开关
功能开关可供我们在软件运行过程中启用/禁用相应的功能。这种技术其实非常容易理解和使用:为生产版本提供一个能彻底禁用某项功能的配置,并只在对应功能彻底完工可以正常工作后才将该属性激活。

举例来说,若要将某个应用程序内的一个功能全局禁用或激活:
if Feature.isEnabled('new_awesome_feature')
# Do something new, cool and awesome
else
# Do old, same as always stuff
end
或者如果要真对具体用户实现类似目的:

if Feature.isEnabled('new_awesome_feature', current_user)
# Do something new, cool and awesome
else
# Do old, same as always stuff
end
摸黑启动
摸黑启动的目的在于通过生产环境进行负载模拟!

在测试环境中,通常很难为软件模拟出成百上千万用户规模的负载。

如果不进行切实的负载测试,就无法知道基础架构能否承受住最终面临的压力。

此时并不需要模拟负载,而是可以实际部署这样的功能,然后看看在不影响可用性的前提下到底会发生什么。

Facebook将这种做法称之为功能的“摸黑启动”。

假设我们要将一个有5亿用户使用的静态搜索字段变成一个包含自动补全功能的字段,借此让用户可以更快速获得搜索结果。为该功能构建一个Web服务,并且希望模拟所有用户同时输入文字,向该Web服务生成大量请求的场景。

此时即可通过摸黑启动策略为现有表单添加一个隐藏的后台进程,通过该进程将输入的搜索关键字发送给新增的自动补全服务,并自动发送多次。

就算新增的Web服务彻底崩溃了,也不会造成任何实质损害。网页上可以完全忽略服务器错误。而就算该服务崩溃了,我们至少还可以对该服务进行优化和完善,直到能承受如此大量的负载。

这就等于在现实世界中进行了一次负载测试。
 
蓝/绿部署
蓝/绿部署是指为下一版产品构建另一个完整的生产环境。开发和运维团队可以在这个单独的生产环境中放心地构建下一版产品。

当下一版产品全部完成后,可以修改负载均衡器的配置,以透明的方式将用户自动重定向至新发布的下一版。

随后可将上一版的生产环境回收,用于构建下下一

详解微服务实践从架构到部署

运维技术OS小编 发表了文章 • 0 个评论 • 24 次浏览 • 4 天前 • 来自相关话题

前言

前段时间公司事情多,这篇长文写了放、放了写…耽搁了一些进度。各个自媒体的更新也慢了很多,这里给大家说句抱歉了。
 
现如今“微服务”遍地开花,已经成软件架构领域最受欢迎的热门话题之一。网上和书籍中都有很多关于微服务基础和优势的学习材料,但是我们可能会发现这东西在现实世界企业场景中似乎好像没那么普及,真正能跑的微服务资源其实也不是很多,大多是停留在概念和摸索阶段。

在这篇文章里,我打算讲讲微服务架构(MSA)的关键架构概念,以及如何在实践中将这些架构原理应用起来。





前因:单片结构

企业应用,因为服务于众多业务需求,因此会有些特定的软件应用提供许多功能,而一般惯例是把这些功能都堆在单个单片应用中。例如,ERP,CRM和其他各种软件系统被规划构建为具有数百个功能的整体。这种带坑应用一经部署,在往后的故障排除、扩展和升级场景中就是一场接一场的恶梦了。

面向服务架构(SOA)旨在通过引入“服务”的概念来克服以上的限制,“服务”是从应用程序提供的类似功能中提取出来的聚合和分组。因此,使用SOA,软件应用程序就会被设计为“粗粒度”服务的组合。然而,SOA中服务的范围非常广泛,这又引出了复杂而庞大的服务与一大堆操作(功能)以及复杂无比的消息格式和标准(如WS *标准)。




多数情况下,SOA中的服务彼此独立,只不过它们与所有其他服务一起部署在相同的运行时间里(只需考虑将部署到同一个Tomcat实例中的多个Web应用)。和单片软件应用类似,这些服务通过积累各种功而具有随时间推移的习惯。图1是一个非常好的一个单片架构的例子,显示了包括多个服务的零售软件应用,所有这些服务都能部署到同一应用程序。

说了那么多,大家是不是有点不明所以?我总结了一些重点,以下就是基于单片架构的应用程序的一些特性归纳:
单片应用程序被设计、开发和部署为单个单元。单片应用相对复杂,导致维护,升级和新特性困难重重。难以用单片架构来实践敏捷开发和交付方法。想更新某部分,很可能要重新部署整个应用。规模需求冲突的情况下,若想做单点扩展,要做好多倍资源甚至推倒重来的准备(例如,想给A服务更多CPU,B服务可能要重做,也可能要补两三倍memory)可靠性:一个不稳定的服务可以拖慢整个应用性能。难创新:采用新技术和框架非常困难,因为所有的功能必须建立在均匀的技术/框架上。
单片架构的天然特性,直接给微服务架构的异军突起带来了绝佳的机会。
 

后果:微服务架构

微服务架构(MSA)的基础是将单片应用作为一套小型和独立服务来开发,这些服务都在自己的空间独立开发、部署和运行。在微服务体系结构的大多数定义中,它普遍被解释为将巨大的可用服务隔离成一套独立服务的过程。

不过我对这些有自己的理解,微服务的逻辑不仅是将整个大容量服务分为独立服务,关键在于通过查看从整体提供的功能,我们就可以确定所需的业务能力。而这些业务能力可以具体实现为各自独立的细粒度和自包含(微)服务。它们可能在一个技术堆栈上实现,每个服务都处理一个非常具体和有限的业务范围。

因此,上面解释的在线零售系统场景可以通过如图2的微服务架构实现。通过微服务架构,零售软件应用程序被规整为一套微服务。而且从图2最底下一层可以看出,根据业务需求,还多了一个从原始服务组合中额外创建的一个微服务。换句话说,想跟进微服务,要有超大容量服务可能会分裂的准备,不过我相信相比于进步,这点麻烦值得付出。 




所以,铺垫了那么多,现在我们深入了解微服务的关键架构原理,这里重要的是最好带着实践的思路来思考问题。
 

设计微服务:大小,范围和功能

通过Microservices Architecture可以从头开始构建软件应用或改造现有应用程序/服务…无论是哪种方法,正确判定Microservices的大小,范围和功能,都至关重要。我感觉,这可能是在Microservices Architecture实践最初(对的,“最初”这个词用的没错)最难的事了。

现在聊聊关于微服务的规模、范围和功能的关键实践问题和对一些坊间误解的辟谣。
代码行数/团队规模都是坑B指标:这里先引入一个概念,双披萨团队,有兴趣的可以去深入了解。根据实施代码或团队规模,有几个讨论决定了Microservices的大小。然而,这些被认为是非常不切实际和糟糕的指标,即便我们仍然可以使用较少的代码/双比萨团队做规模开发,但这种思路完全违反了微服务架构主体。'Micro'有点误导性的词语:大多数开发人员倾向于认为他们应尽可能的减少服务,这是一个天然的误解。在SOA上下文中,服务通常被实现为具有数十个操作/功能的单片全局。所以,像SOA这样的服务就算命名为微服务,不会给你带来微服务架构的好处。
 
那么那么我们应该如何在微服务架构中正确设计服务?
 

微服务设计指南

单一责任原则(SRP):为微服务提供有限和重点突出的业务范围,有助于我们满足开发和提供服务的敏捷性。在微服务的设计阶段,我们应该找到各服务的边界,并将其与业务能力(也称为域驱动设计中的有界环境 )保持一致。微服务设计要确保敏捷/独立开发和部署服务的丝滑稳定。我们的重点应该放在微服务的范围上,而不是使服务更"小"。服务的大小应该是指所需的范围大小,以促进给定的业务能力。与SOA中的服务不同,给定的微服务应该具有很少的操作/功能和简单的消息格式。随着时间的推移,首先开始具有相对广泛的服务边界,重构到较小的服务界限(基于业务需求),这是一个很好的做法。
在我们的零售用例中,整体功能分为四个不同的微服务,即“库存”,“会计”,“运输”和“存储”。他们正在解决一个有限但重点突出的业务范围,使每个服务彼此完全脱钩,并确保开发和部署中的敏捷性。
 

微服务中的消息传递

在单片应用中,使用函数调用或语言级方法调用不同处理器/组件的业务功能。在SOA中,这种转移趋向于更为松散耦合的Web服务级别消息传递,主要基于不同协议(如HTTP,JMS)之上的SOAP。而具有数十种操作和复杂消息模式的Web服务是Web服务普及的关键阻力。对于Microservices架构,它需要简单而轻量的消息传递机制就行。
 

同步消息 - REST,Thrift

对于同步消息传递(客户端期望从服务及时得到响应并等待到达),在微服务体系结构中,REST是主流标配,因为它提供了基于资源API风格的HTTP请求响应实现的简单消息传递方式。因此,大多数微服务实现都使用HTTP以及基于资源API的风格(每个功能都以资源和在这些资源之上执行的操作来表示)。




另外,Thrift (可以在其中为微服务定义接口定义)可以作为REST / HTTP同步消息传递的替代方法。
 

异步消息 - AMQP,STOMP,MQTT

对于某些需要使用异步消息传递技术(客户端不期望立即响应或根本不接受响应)的微服务场景。多看看诸如AMQP, STOMP或MQTT之类的异步消息协议就好了。
 

消息格式 - JSON,XML,Thrift,ProtoBuf,Avro

决定微服务最适合的消息格式是另一个关键因素。传统单片应用使用二进制格式(习惯了,表示还好不算复杂);基于SOA / Web服务的应用使用基于复杂消息格式(SOAP)和模式(xsd)的文本消息。而在大多数基于微服务器的应用中,简单基于文本的消息格式即可,如JSON和XML,反正就是基于HTTP资源API风格跑起来。在我们需要二进制消息格式的情况下(文本消息在某些用例中可能会变冗长),微服务可以利用二进制消息格式,如Thrift,ProtoBuf或Avro…
 

服务合同 - 定义服务接口 - Swagger, RAML, Thrift IDL

若你把业务能力实现为服务,就需要定义和发布服务合同。传统单片应用几乎找不到这样的功能来定义应用的业务功能。在SOA/Web服务的世界里,WSDL用于定义服务合同。不过众所周知,WSDL不是用于定义微服务合同的理想解决方案,因为WSDL非常复杂且与SOAP紧密耦合。

由于我们在REST架构风格之上构建微服务器,所以我们可以使用相同的REST API定义技术来定义微服务器的合同。因此,微服务更多情况下用标准的REST API定义语言(如Swagger和RAML) 来定义服务契约。
对于不基于HTTP/REST(如Thrift)的其他微服务实现,可以用协议级别的“接口定义语言(IDL)”(如Thrift IDL)。
 

集成微服务(Inter-service / process communication)

在微服务架构中,软件应用程序被构建为一套独立的服务。因此,为了实现业务用例,需要在不同的微服务/流程之间建立通信结构。这就是为什么微服务之间的服务间/过程通信至关重要的原因。
 
在SOA实现中,服务之间的服务间通信通过企业服务总线(ESB)来实现,大部分业务逻辑都位于中间层(消息路由,转换和业务流程)中。然而,微服务架构促进消除中央消息总线/ESB,并将“智能”或业务逻辑移至服务和客户端(称为“智能端点”)。

由于微服务使用诸如HTTP,JSON等标准协议,因此在微服务之间的通信中,与不同协议集成的要求是最小的。Microservice通信中的另一种替代方法是使用轻量级的消息总线或网关,它们有最小的路由功能,并且仅用作在网关上实现业务逻辑的“dumb pipe”。基于这些风格,在微服务架构中不可避免的出现了几种通信模式。
 

点到点风格 - 直接调用服务

以点对点的形式,消息路由逻辑的整体跑在每个端点之上,服务可以直接通信。这里每个微服务器都暴露一个REST API,一个给定的微服务器或外部客户端可以通过对应的REST API调用另一个微服务器。




显然,这个模型适用于相对简单的基于微服务的应用。随着服务数量增加,复杂就会压倒一切的源头。传统SOA实现中使用ESB也是相同的原因,不过是为了摆脱混乱的点对点集成链接。总结微服务通信中点对点风格的缺点:
须在每个微服务级别实现终端用户认证,限制,监控等非功能性要求。由于不可避免的复制一些常用功能,每个微服务实现可能会变得复杂。服务和客户端之间的所有通信都无法控制(哪怕只是监控,跟踪或过滤)。通常直接沟通风格被认为是用于大规模微服务实现的微服务反向模式。
特征说完,总结:对于复杂的微服务用例,可以考虑轻量级的中央消息总线,而不是点对点连接或中心ESB,思路是为微服务提供一个抽象层,并可用于实现各种非功能的能力,这种风格被称为API网关风格,往下看。
 

API网关样式

API网关风格背后的关键思想是使用轻量级消息网关作为所有客户端/消费者的主要入口点,并在Gateway级别实现常见的非功能需求。通常,API网关允许通过REST/HTTP使用受管API。因此,在这里,我们可以将通过API-GW实现作为微服务的业务功能公开为管理API。Microservices架构和API管理的组合,这个算是最佳选择了。




在我们的零售业务场景中,如图5,所有的微服务都通过API-GW公开,这是所有客户端的单个入口点。总结下API-GW风格优势:
能够在现有微服务的网关级别提供所需的抽象。例如,API网关可以为每个客户端提供不同的API,而不是提一个所有类型的API。网关级、轻量级消息路由/转换。非功能性功能(如安全性,监控和调节)的应用能如臂指使。API-GW模式让非功能性要求在Gateway级别实现,微服务得以瘦身。
比较推荐API-GW,我没具体了解过,但这个应该也是应用最广泛的模式。
 

Message Broker风格

微服务还可以和异步消息的场景集成,比如队列或主题的单向请求以及订阅。给定的微服务可以做消息生成,并且它可以异步地将消息发送到队列或主题。那么消费的微服务器可以消耗来自队列或主题的消息。这种风格将消息生成与消息消费分离,中间消息代理缓冲直到消费处理。




消费/生产之间的通信基于异步消息标准(例如AMQP,MQTT等)的消息代理来实现。
 

分散式数据管理

单片架构中,应用将数据存储在单个和集中的数据库中,以实现应用的各种功能/功能。




在微服务体系结构中,功能分散在多个微服务器中,如果我们使用相同的集中式数据库,那么微服务器将不再彼此独立(例如,如果数据库模式已经从给定的微服务器发生变化)。因此,每个微服务器都必须拥有自己的数据库。




以下是在微服务架构中实施分散数据管理的关键方面:
每个微服务器都可以有一个私有数据库来保存实现从其提供的业务功能所需的数据。给定的微服务器只能访问专用私有数据库,而不能访问其他微服务器的数据库。某些业务场景中,可能单个事务需要更新多个数据库。在这种情况,其他微服务器的数据库应仅通过其服务API进行更新,而非直接访问。
非集中式数据管理提供完全解耦的微服务器,以及选择不同数据管理技术(SQL或NoSQL等,按需分配,可能不同数据库管理系统)的自由。再者对于涉及多个微服务的复杂事务用例,事务行为必须使用从每个服务提供的API来实现,并且逻辑位于客户端或中间(GW)级别。
 

权力下放的治理思维

微服务架构倾向于分散治理。一般来说,SOA治理指导了可重用服务的开发,建立如何设计和开发服务以及这些服务随时间的变化。它确定了服务提供商和这些服务的消费者之间的协议,告诉消费者他们期望什么以及提供者有义务提供什么。在SOA治理中,共有两种类型的治理:
设计时治理 - 定义和控制服务策略的服务创建,设计和实施;运行时管理 - 执行期间执行服务策略的能力;
那么,微服务环境中的治理究竟怎么理解?在微服务架构中,微服务通过各种技术和平台构建为完全独立和解耦服务。因此,不需要为服务设计和开发定义一个共同的标准。总结下微服务的权力下放治理能力:
在微服务架构中,管理不需要集中设计。微服务器可以因地制宜,决定其设计和实现。微服务架构促进了共享/可重用服务的共享。一些运行时管理方面,如SLA,节流,监控,常见安全要求和服务发现可以在API-GW级别实现。
 

服务注册和服务发现

在微服务架构中,需要处理的微服务器数量相当高。而且,由于微服务的快速和敏捷的开发/部署性质,他们的位置一般来说也会动态变化。因此,你需要在运行时间内找到微服务器的位置。解决此问题的方法是使用Service Registry。
 
服务注册表:
服务注册表保存微服务实例及其位置。Microservice实例在启动时注册到服务注册表,并在关机时注销。消费者可以通过服务注册表找到可用的微服务及其位置。
 
服务发现:
要找到可用的微服务及其位置,我们要一个服务发现机制。有两种类型的服务发现机制,客户端发现和服务器端发现,来看看这些服务发现机制各原理如何。
 
客户端发现:
在这种方法中,客户端或API-GW通过查询服务注册表来获取服务实例的位置。




这里客户端/API-GW必须通过调用Service-Registry组件来实现服务发现逻辑。
 
服务器端发现:
通过这种方法,客户机/API-GW将请求发送到在众所周知的位置运行的组件(如负载平衡器)。该组件调用服务注册表并确定微服务器的绝对位置。




Kubernetes等微服务部署解决方案提供了服务端发现机制,自媒体里链接不能发就算了。
 

部署

在微服务架构方面,微服务的部署同样起着至关重要的作用,关键要求如下:
能够独立于其他微服务部署/部署。必须能在每个微服务级别做扩展(给定的服务可能比其他服务获得更多的流量)。快速构建和部署。一个微服务的故障不得影响任何其他服务。
Docker提供了一种很好的方式来部署满足上述要求的微服务器,所涉及的关键步骤如下:
将微服务作为(Docker)容器镜像打包。将每个服务实例部署为容器。基于更改容器实例的数量来进行缩放。构建,部署和启动微服务将会快得多,因为我们使用Docker容器(这比常规VM快得多)
Kubernetes通过允许将一组Linux容器作为单个系统进行管理,在多个主机上管理和运行Docker容器,提供容器的共同位置,服务发现和复制控制,从而扩展Docker功能。其实大多数这些功能在微服务环境中也很重要,因此使用Kubernetes(在Docker上面)用于微服务部署已经成为一种非常强大的方法,特别是对于大规模微服务部署。




图11,显示了零售应用的微服务部署概述。每个微服务实例被部署为容器,每个主机有两个容器。同时可随意更改在给定主机上运行的容器数。
 

安全

现实很骨感,无论是不是微服务都应当得到安全方面的保护。在进入微服务安全性篇章之前,我们先快速过一下如何在单片应用层面实现安全。
在典型的单片应用程序中,安全性是关于发现“谁是呼叫者”,“呼叫者可以做什么”,以及“我们如何传播该信息”。这通常在位于请求处理链的开始处的公共安全组件中实现,该组件使用底层用户存储库(或用户存储)填充所需的信息。
那么,我们可以直接将这种模式转化为微服务架构吗?是的,但是这需要在每个微服务级别实现安全组件,该级别正在与集中式/共享用户存储库进行通信,并检索所需的信息。这是解决Microservices安全问题的一种非常乏味的方法。

还有,划重点,我们可以利用广泛使用的API-Security标准(如OAuth2和OpenID Connect)来找到我们的Microservices安全问题的更好的解决方案。在深入了解之前,我来总结下这些标准。
 
OAuth2 - 是访问委派协议。客户端使用授权服务器进行身份验证,并获取称为“访问令牌”的不透明令牌。Access令牌具有关于用户/客户端的零信息。它仅引用只能由授权服务器检索的用户信息。因此,这被称为“副参考令牌”,即使在公共网络/互联网中也可以安全地使用该令牌。OpenID Connect的行为与OAuth类似,但是除了访问令牌之外,授权服务器还会发出一个包含用户信息的ID令牌。这通常由JWT(JSON Web令牌)实现,并由授权服务器签名。因此,可以确保授权服务器与客户端之间的信任。因此,JWT令牌被称为“副值令牌”,因为它包含用户的信息,显然不能在内部网络之外使用它。
 
现在,让我们看看我们如何使用这些标准来保护我们零售业的微观服务。




如图12,这些是实现微服务安全性的关键步骤:
将身份验证保留到OAuth和OpenID Connect服务器(授权服务器),以便microservices成功提供访问权限,因为有人有权使用数据。使用API-GW样式,其中所有客户端请求都有一个入口。客户端连接到授权服务器并获取访问令牌(按引用令牌)。然后将访问令牌与请求一起发送到API-GW。网关上的令牌翻译:API-GW提取访问令牌,并将其发送到授权服务器以通过值令牌来检索JWT。GW将该JWT与请求一起传递到微服务层。JWT包含有助于存储用户会话等的必要信息。如果每个服务都可以了解JSON - Web令牌,那么已经分发了你的身份机制,那你就被允许在整个系统中传输身份。在每个微服务层,我们可以有一个处理JWT的组件,这是一个非常简单的实现。
 

交易

微服务中的交易支持如何?其实,支持跨多个微服务的分布式事务是一个非常复杂的任务。

微服务架构本身鼓励服务之间的无事务协调。这个想法是给定的服务是完全独立,基于单一的责任原则。跨多个微服务器分布式事务的需要通常是微服务体系结构设计缺陷的症状,通常可以通过重构微服务器的范围进行整理。

然而,如果强制性要求跨多个服务进行分布式交易,则可以通过在每个微服务级别引入“补偿操作”来实现这种情况。关键思想是,给定的微服务是基于单一责任原则,如果给定的微服务器未能执行给定的操作,那么我们可以认为这是整个微服务的失败。
 

设计失败

Microservice架构引入了一系列分散的服务,与单片设计相比,增加了在每个服务级别发生故障的可能性。由于网络问题,基础资源不可用,给定的微服务可能会失败。不可用或无响应的微服务器不应玩砸了整个基于微服务器的应用。因此,微服务应该有容错余地,能够在可能的情况下恢复,客户端也必须妥善处理。

此外,由于服务可能随时失败,因此能够快速检测(实时监控)故障,并尽可能自动恢复服务(故障自愈)很重要。在微服务玩家的眼里,处理错误有几种常用模式。
 
断路器
当你对微服务器进行外部呼叫,就可以在每次调用时配置故障监视器组件,并且当故障达到某个阈值时该组件将停止对服务的任何进一步调用(跳闸电路)。在打开状态(可以配置)的一定数量的请求后,将电路更换回关闭状态。

这种模式对于避免不必要的资源消耗,由于超时引起的请求延迟是非常有用,也让我们有机会更积极的监控系统(基于活动的开路状态)。
 
隔板
基于微服务器的应用的一部分的故障不应影响其他应用,隔板模式是关于隔离应用的不同部分,以便应用的某个部分的服务失败不会影响任何其他服务。
 
超时
超时是一种主观加入的合理机制,当你认为结果无法返回,则允许停止响应。

模式这里叨叨完。那么,我们在哪里和如何使用这些模式与微服务?大多数情况下这些模式都适用于Gateway级别,这意味着当微服务不可用或没有响应时,在网关级别,我们可以决定是否使用断路器或超时模式将请求发送到微服务。此外,在Gateway级别实现诸如隔板之类模式也很重要,因为它是所有客户端请求的单个入口点,也因此发送服务中的故障不应影响其他微服务器的调用。

另外,Gateway可以作为中心点,我们可以通过Gateway调用每个微服务来获取每个微服务器的状态和监视。
 
微服务,企业集成,API管理和遐(瞎)想
我们专门研究过微服务架构的各种特点,以及如何在现代企业IT环境中实现它们。但是,我们应该记住,微服务不是灵丹妙药。流行语概念的盲目适应不会解决“真实”企业IT问题。

它微服务是有很多优势,我们也应该充分利用。但是我们还必须记住,解决所有企业IT问题与微服务之间联系不一定就是强相关。例如,Microservices架构促进消除ESB作为中央总线,但是当涉及到现实世界的IT时,现在有很多不是基于Microservices的应用程序/服务。所以,整合是避不开的解决思路,要做集成。

所以,理想情况下,Microservices和其他企业架构概念(如Integration)的混合方法将更为现实。以后再聊了,这个能写的太多。 希望这能让你更清楚地了解如何在企业中使用Microservices。
分享阅读原文: http://dwz.cn/6iVsiQ  查看全部


前言


前段时间公司事情多,这篇长文写了放、放了写…耽搁了一些进度。各个自媒体的更新也慢了很多,这里给大家说句抱歉了。
 
现如今“微服务”遍地开花,已经成软件架构领域最受欢迎的热门话题之一。网上和书籍中都有很多关于微服务基础和优势的学习材料,但是我们可能会发现这东西在现实世界企业场景中似乎好像没那么普及,真正能跑的微服务资源其实也不是很多,大多是停留在概念和摸索阶段。

在这篇文章里,我打算讲讲微服务架构(MSA)的关键架构概念,以及如何在实践中将这些架构原理应用起来。
warch.png


前因:单片结构


企业应用,因为服务于众多业务需求,因此会有些特定的软件应用提供许多功能,而一般惯例是把这些功能都堆在单个单片应用中。例如,ERP,CRM和其他各种软件系统被规划构建为具有数百个功能的整体。这种带坑应用一经部署,在往后的故障排除、扩展和升级场景中就是一场接一场的恶梦了。

面向服务架构(SOA)旨在通过引入“服务”的概念来克服以上的限制,“服务”是从应用程序提供的类似功能中提取出来的聚合和分组。因此,使用SOA,软件应用程序就会被设计为“粗粒度”服务的组合。然而,SOA中服务的范围非常广泛,这又引出了复杂而庞大的服务与一大堆操作(功能)以及复杂无比的消息格式和标准(如WS *标准)。
wss.png

多数情况下,SOA中的服务彼此独立,只不过它们与所有其他服务一起部署在相同的运行时间里(只需考虑将部署到同一个Tomcat实例中的多个Web应用)。和单片软件应用类似,这些服务通过积累各种功而具有随时间推移的习惯。图1是一个非常好的一个单片架构的例子,显示了包括多个服务的零售软件应用,所有这些服务都能部署到同一应用程序。

说了那么多,大家是不是有点不明所以?我总结了一些重点,以下就是基于单片架构的应用程序的一些特性归纳:
  • 单片应用程序被设计、开发和部署为单个单元。
  • 单片应用相对复杂,导致维护,升级和新特性困难重重。
  • 难以用单片架构来实践敏捷开发和交付方法。
  • 想更新某部分,很可能要重新部署整个应用。
  • 规模需求冲突的情况下,若想做单点扩展,要做好多倍资源甚至推倒重来的准备(例如,想给A服务更多CPU,B服务可能要重做,也可能要补两三倍memory)
  • 可靠性:一个不稳定的服务可以拖慢整个应用性能。
  • 难创新:采用新技术和框架非常困难,因为所有的功能必须建立在均匀的技术/框架上。

单片架构的天然特性,直接给微服务架构的异军突起带来了绝佳的机会。
 


后果:微服务架构


微服务架构(MSA)的基础是将单片应用作为一套小型和独立服务来开发,这些服务都在自己的空间独立开发、部署和运行。在微服务体系结构的大多数定义中,它普遍被解释为将巨大的可用服务隔离成一套独立服务的过程。

不过我对这些有自己的理解,微服务的逻辑不仅是将整个大容量服务分为独立服务,关键在于通过查看从整体提供的功能,我们就可以确定所需的业务能力。而这些业务能力可以具体实现为各自独立的细粒度和自包含(微)服务。它们可能在一个技术堆栈上实现,每个服务都处理一个非常具体和有限的业务范围。

因此,上面解释的在线零售系统场景可以通过如图2的微服务架构实现。通过微服务架构,零售软件应用程序被规整为一套微服务。而且从图2最底下一层可以看出,根据业务需求,还多了一个从原始服务组合中额外创建的一个微服务。换句话说,想跟进微服务,要有超大容量服务可能会分裂的准备,不过我相信相比于进步,这点麻烦值得付出。 
asarch.png

所以,铺垫了那么多,现在我们深入了解微服务的关键架构原理,这里重要的是最好带着实践的思路来思考问题。
 


设计微服务:大小,范围和功能


通过Microservices Architecture可以从头开始构建软件应用或改造现有应用程序/服务…无论是哪种方法,正确判定Microservices的大小,范围和功能,都至关重要。我感觉,这可能是在Microservices Architecture实践最初(对的,“最初”这个词用的没错)最难的事了。

现在聊聊关于微服务的规模、范围和功能的关键实践问题和对一些坊间误解的辟谣。
  1. 代码行数/团队规模都是坑B指标:这里先引入一个概念,双披萨团队,有兴趣的可以去深入了解。根据实施代码或团队规模,有几个讨论决定了Microservices的大小。然而,这些被认为是非常不切实际和糟糕的指标,即便我们仍然可以使用较少的代码/双比萨团队做规模开发,但这种思路完全违反了微服务架构主体。
  2. 'Micro'有点误导性的词语:大多数开发人员倾向于认为他们应尽可能的减少服务,这是一个天然的误解。
  3. 在SOA上下文中,服务通常被实现为具有数十个操作/功能的单片全局。所以,像SOA这样的服务就算命名为微服务,不会给你带来微服务架构的好处。

 
那么那么我们应该如何在微服务架构中正确设计服务?
 


微服务设计指南


  1. 单一责任原则(SRP):为微服务提供有限和重点突出的业务范围,有助于我们满足开发和提供服务的敏捷性。
  2. 在微服务的设计阶段,我们应该找到各服务的边界,并将其与业务能力(也称为域驱动设计中的有界环境 )保持一致。
  3. 微服务设计要确保敏捷/独立开发和部署服务的丝滑稳定。
  4. 我们的重点应该放在微服务的范围上,而不是使服务更"小"。服务的大小应该是指所需的范围大小,以促进给定的业务能力。
  5. 与SOA中的服务不同,给定的微服务应该具有很少的操作/功能和简单的消息格式。
  6. 随着时间的推移,首先开始具有相对广泛的服务边界,重构到较小的服务界限(基于业务需求),这是一个很好的做法。

在我们的零售用例中,整体功能分为四个不同的微服务,即“库存”,“会计”,“运输”和“存储”。他们正在解决一个有限但重点突出的业务范围,使每个服务彼此完全脱钩,并确保开发和部署中的敏捷性。
 


微服务中的消息传递


在单片应用中,使用函数调用或语言级方法调用不同处理器/组件的业务功能。在SOA中,这种转移趋向于更为松散耦合的Web服务级别消息传递,主要基于不同协议(如HTTP,JMS)之上的SOAP。而具有数十种操作和复杂消息模式的Web服务是Web服务普及的关键阻力。对于Microservices架构,它需要简单而轻量的消息传递机制就行。
 


同步消息 - REST,Thrift


对于同步消息传递(客户端期望从服务及时得到响应并等待到达),在微服务体系结构中,REST是主流标配,因为它提供了基于资源API风格的HTTP请求响应实现的简单消息传递方式。因此,大多数微服务实现都使用HTTP以及基于资源API的风格(每个功能都以资源和在这些资源之上执行的操作来表示)。
api.png

另外,Thrift (可以在其中为微服务定义接口定义)可以作为REST / HTTP同步消息传递的替代方法。
 


异步消息 - AMQP,STOMP,MQTT


对于某些需要使用异步消息传递技术(客户端不期望立即响应或根本不接受响应)的微服务场景。多看看诸如AMQP, STOMP或MQTT之类的异步消息协议就好了。
 


消息格式 - JSON,XML,Thrift,ProtoBuf,Avro


决定微服务最适合的消息格式是另一个关键因素。传统单片应用使用二进制格式(习惯了,表示还好不算复杂);基于SOA / Web服务的应用使用基于复杂消息格式(SOAP)和模式(xsd)的文本消息。而在大多数基于微服务器的应用中,简单基于文本的消息格式即可,如JSON和XML,反正就是基于HTTP资源API风格跑起来。在我们需要二进制消息格式的情况下(文本消息在某些用例中可能会变冗长),微服务可以利用二进制消息格式,如Thrift,ProtoBuf或Avro…
 


服务合同 - 定义服务接口 - Swagger, RAML, Thrift IDL


若你把业务能力实现为服务,就需要定义和发布服务合同。传统单片应用几乎找不到这样的功能来定义应用的业务功能。在SOA/Web服务的世界里,WSDL用于定义服务合同。不过众所周知,WSDL不是用于定义微服务合同的理想解决方案,因为WSDL非常复杂且与SOAP紧密耦合。

由于我们在REST架构风格之上构建微服务器,所以我们可以使用相同的REST API定义技术来定义微服务器的合同。因此,微服务更多情况下用标准的REST API定义语言(如Swagger和RAML) 来定义服务契约。
对于不基于HTTP/REST(如Thrift)的其他微服务实现,可以用协议级别的“接口定义语言(IDL)”(如Thrift IDL)。
 


集成微服务(Inter-service / process communication)


在微服务架构中,软件应用程序被构建为一套独立的服务。因此,为了实现业务用例,需要在不同的微服务/流程之间建立通信结构。这就是为什么微服务之间的服务间/过程通信至关重要的原因。
 
在SOA实现中,服务之间的服务间通信通过企业服务总线(ESB)来实现,大部分业务逻辑都位于中间层(消息路由,转换和业务流程)中。然而,微服务架构促进消除中央消息总线/ESB,并将“智能”或业务逻辑移至服务和客户端(称为“智能端点”)。

由于微服务使用诸如HTTP,JSON等标准协议,因此在微服务之间的通信中,与不同协议集成的要求是最小的。Microservice通信中的另一种替代方法是使用轻量级的消息总线或网关,它们有最小的路由功能,并且仅用作在网关上实现业务逻辑的“dumb pipe”。基于这些风格,在微服务架构中不可避免的出现了几种通信模式。
 


点到点风格 - 直接调用服务


以点对点的形式,消息路由逻辑的整体跑在每个端点之上,服务可以直接通信。这里每个微服务器都暴露一个REST API,一个给定的微服务器或外部客户端可以通过对应的REST API调用另一个微服务器。
dtd.png

显然,这个模型适用于相对简单的基于微服务的应用。随着服务数量增加,复杂就会压倒一切的源头。传统SOA实现中使用ESB也是相同的原因,不过是为了摆脱混乱的点对点集成链接。总结微服务通信中点对点风格的缺点:
  • 须在每个微服务级别实现终端用户认证,限制,监控等非功能性要求。
  • 由于不可避免的复制一些常用功能,每个微服务实现可能会变得复杂。
  • 服务和客户端之间的所有通信都无法控制(哪怕只是监控,跟踪或过滤)。
  • 通常直接沟通风格被认为是用于大规模微服务实现的微服务反向模式。

特征说完,总结:对于复杂的微服务用例,可以考虑轻量级的中央消息总线,而不是点对点连接或中心ESB,思路是为微服务提供一个抽象层,并可用于实现各种非功能的能力,这种风格被称为API网关风格,往下看。
 


API网关样式


API网关风格背后的关键思想是使用轻量级消息网关作为所有客户端/消费者的主要入口点,并在Gateway级别实现常见的非功能需求。通常,API网关允许通过REST/HTTP使用受管API。因此,在这里,我们可以将通过API-GW实现作为微服务的业务功能公开为管理API。Microservices架构和API管理的组合,这个算是最佳选择了。
apigew.png

在我们的零售业务场景中,如图5,所有的微服务都通过API-GW公开,这是所有客户端的单个入口点。总结下API-GW风格优势:
  • 能够在现有微服务的网关级别提供所需的抽象。例如,API网关可以为每个客户端提供不同的API,而不是提一个所有类型的API。
  • 网关级、轻量级消息路由/转换。
  • 非功能性功能(如安全性,监控和调节)的应用能如臂指使。
  • API-GW模式让非功能性要求在Gateway级别实现,微服务得以瘦身。

比较推荐API-GW,我没具体了解过,但这个应该也是应用最广泛的模式。
 


Message Broker风格


微服务还可以和异步消息的场景集成,比如队列或主题的单向请求以及订阅。给定的微服务可以做消息生成,并且它可以异步地将消息发送到队列或主题。那么消费的微服务器可以消耗来自队列或主题的消息。这种风格将消息生成与消息消费分离,中间消息代理缓冲直到消费处理。
messbroker.png

消费/生产之间的通信基于异步消息标准(例如AMQP,MQTT等)的消息代理来实现。
 


分散式数据管理


单片架构中,应用将数据存储在单个和集中的数据库中,以实现应用的各种功能/功能。
darch.png

在微服务体系结构中,功能分散在多个微服务器中,如果我们使用相同的集中式数据库,那么微服务器将不再彼此独立(例如,如果数据库模式已经从给定的微服务器发生变化)。因此,每个微服务器都必须拥有自己的数据库。
apidb.png

以下是在微服务架构中实施分散数据管理的关键方面:
  • 每个微服务器都可以有一个私有数据库来保存实现从其提供的业务功能所需的数据。
  • 给定的微服务器只能访问专用私有数据库,而不能访问其他微服务器的数据库。
  • 某些业务场景中,可能单个事务需要更新多个数据库。在这种情况,其他微服务器的数据库应仅通过其服务API进行更新,而非直接访问。

非集中式数据管理提供完全解耦的微服务器,以及选择不同数据管理技术(SQL或NoSQL等,按需分配,可能不同数据库管理系统)的自由。再者对于涉及多个微服务的复杂事务用例,事务行为必须使用从每个服务提供的API来实现,并且逻辑位于客户端或中间(GW)级别。
 


权力下放的治理思维


微服务架构倾向于分散治理。一般来说,SOA治理指导了可重用服务的开发,建立如何设计和开发服务以及这些服务随时间的变化。它确定了服务提供商和这些服务的消费者之间的协议,告诉消费者他们期望什么以及提供者有义务提供什么。在SOA治理中,共有两种类型的治理:
  • 设计时治理 - 定义和控制服务策略的服务创建,设计和实施;
  • 运行时管理 - 执行期间执行服务策略的能力;

那么,微服务环境中的治理究竟怎么理解?在微服务架构中,微服务通过各种技术和平台构建为完全独立和解耦服务。因此,不需要为服务设计和开发定义一个共同的标准。总结下微服务的权力下放治理能力:
  • 在微服务架构中,管理不需要集中设计。
  • 微服务器可以因地制宜,决定其设计和实现。
  • 微服务架构促进了共享/可重用服务的共享。
  • 一些运行时管理方面,如SLA,节流,监控,常见安全要求和服务发现可以在API-GW级别实现。

 


服务注册和服务发现


在微服务架构中,需要处理的微服务器数量相当高。而且,由于微服务的快速和敏捷的开发/部署性质,他们的位置一般来说也会动态变化。因此,你需要在运行时间内找到微服务器的位置。解决此问题的方法是使用Service Registry。
 
服务注册表:
服务注册表保存微服务实例及其位置。Microservice实例在启动时注册到服务注册表,并在关机时注销。消费者可以通过服务注册表找到可用的微服务及其位置。
 
服务发现:
要找到可用的微服务及其位置,我们要一个服务发现机制。有两种类型的服务发现机制,客户端发现和服务器端发现,来看看这些服务发现机制各原理如何。
 
客户端发现:
在这种方法中,客户端或API-GW通过查询服务注册表来获取服务实例的位置。
apigwc.png

这里客户端/API-GW必须通过调用Service-Registry组件来实现服务发现逻辑。
 
服务器端发现:
通过这种方法,客户机/API-GW将请求发送到在众所周知的位置运行的组件(如负载平衡器)。该组件调用服务注册表并确定微服务器的绝对位置。
sr.png

Kubernetes等微服务部署解决方案提供了服务端发现机制,自媒体里链接不能发就算了。
 


部署


在微服务架构方面,微服务的部署同样起着至关重要的作用,关键要求如下:
  • 能够独立于其他微服务部署/部署。
  • 必须能在每个微服务级别做扩展(给定的服务可能比其他服务获得更多的流量)。
  • 快速构建和部署。
  • 一个微服务的故障不得影响任何其他服务。

Docker提供了一种很好的方式来部署满足上述要求的微服务器,所涉及的关键步骤如下:
  • 将微服务作为(Docker)容器镜像打包。
  • 将每个服务实例部署为容器。
  • 基于更改容器实例的数量来进行缩放。
  • 构建,部署和启动微服务将会快得多,因为我们使用Docker容器(这比常规VM快得多)

Kubernetes通过允许将一组Linux容器作为单个系统进行管理,在多个主机上管理和运行Docker容器,提供容器的共同位置,服务发现和复制控制,从而扩展Docker功能。其实大多数这些功能在微服务环境中也很重要,因此使用Kubernetes(在Docker上面)用于微服务部署已经成为一种非常强大的方法,特别是对于大规模微服务部署。
dockercon.png

图11,显示了零售应用的微服务部署概述。每个微服务实例被部署为容器,每个主机有两个容器。同时可随意更改在给定主机上运行的容器数。
 


安全


现实很骨感,无论是不是微服务都应当得到安全方面的保护。在进入微服务安全性篇章之前,我们先快速过一下如何在单片应用层面实现安全。
  • 在典型的单片应用程序中,安全性是关于发现“谁是呼叫者”,“呼叫者可以做什么”,以及“我们如何传播该信息”。
  • 这通常在位于请求处理链的开始处的公共安全组件中实现,该组件使用底层用户存储库(或用户存储)填充所需的信息。

那么,我们可以直接将这种模式转化为微服务架构吗?是的,但是这需要在每个微服务级别实现安全组件,该级别正在与集中式/共享用户存储库进行通信,并检索所需的信息。这是解决Microservices安全问题的一种非常乏味的方法。

还有,划重点,我们可以利用广泛使用的API-Security标准(如OAuth2和OpenID Connect)来找到我们的Microservices安全问题的更好的解决方案。在深入了解之前,我来总结下这些标准。
 
  • OAuth2 - 是访问委派协议。客户端使用授权服务器进行身份验证,并获取称为“访问令牌”的不透明令牌。Access令牌具有关于用户/客户端的零信息。它仅引用只能由授权服务器检索的用户信息。因此,这被称为“副参考令牌”,即使在公共网络/互联网中也可以安全地使用该令牌。
  • OpenID Connect的行为与OAuth类似,但是除了访问令牌之外,授权服务器还会发出一个包含用户信息的ID令牌。这通常由JWT(JSON Web令牌)实现,并由授权服务器签名。因此,可以确保授权服务器与客户端之间的信任。因此,JWT令牌被称为“副值令牌”,因为它包含用户的信息,显然不能在内部网络之外使用它。

 
现在,让我们看看我们如何使用这些标准来保护我们零售业的微观服务。
wservice.png

如图12,这些是实现微服务安全性的关键步骤:
  • 将身份验证保留到OAuth和OpenID Connect服务器(授权服务器),以便microservices成功提供访问权限,因为有人有权使用数据。
  • 使用API-GW样式,其中所有客户端请求都有一个入口。
  • 客户端连接到授权服务器并获取访问令牌(按引用令牌)。然后将访问令牌与请求一起发送到API-GW。
  • 网关上的令牌翻译:API-GW提取访问令牌,并将其发送到授权服务器以通过值令牌来检索JWT。
  • GW将该JWT与请求一起传递到微服务层。
  • JWT包含有助于存储用户会话等的必要信息。如果每个服务都可以了解JSON - Web令牌,那么已经分发了你的身份机制,那你就被允许在整个系统中传输身份。
  • 在每个微服务层,我们可以有一个处理JWT的组件,这是一个非常简单的实现。

 


交易


微服务中的交易支持如何?其实,支持跨多个微服务的分布式事务是一个非常复杂的任务。

微服务架构本身鼓励服务之间的无事务协调。这个想法是给定的服务是完全独立,基于单一的责任原则。跨多个微服务器分布式事务的需要通常是微服务体系结构设计缺陷的症状,通常可以通过重构微服务器的范围进行整理。

然而,如果强制性要求跨多个服务进行分布式交易,则可以通过在每个微服务级别引入“补偿操作”来实现这种情况。关键思想是,给定的微服务是基于单一责任原则,如果给定的微服务器未能执行给定的操作,那么我们可以认为这是整个微服务的失败。
 


设计失败


Microservice架构引入了一系列分散的服务,与单片设计相比,增加了在每个服务级别发生故障的可能性。由于网络问题,基础资源不可用,给定的微服务可能会失败。不可用或无响应的微服务器不应玩砸了整个基于微服务器的应用。因此,微服务应该有容错余地,能够在可能的情况下恢复,客户端也必须妥善处理。

此外,由于服务可能随时失败,因此能够快速检测(实时监控)故障,并尽可能自动恢复服务(故障自愈)很重要。在微服务玩家的眼里,处理错误有几种常用模式。
 
断路器
当你对微服务器进行外部呼叫,就可以在每次调用时配置故障监视器组件,并且当故障达到某个阈值时该组件将停止对服务的任何进一步调用(跳闸电路)。在打开状态(可以配置)的一定数量的请求后,将电路更换回关闭状态。

这种模式对于避免不必要的资源消耗,由于超时引起的请求延迟是非常有用,也让我们有机会更积极的监控系统(基于活动的开路状态)。
 
隔板
基于微服务器的应用的一部分的故障不应影响其他应用,隔板模式是关于隔离应用的不同部分,以便应用的某个部分的服务失败不会影响任何其他服务。
 
超时
超时是一种主观加入的合理机制,当你认为结果无法返回,则允许停止响应。

模式这里叨叨完。那么,我们在哪里和如何使用这些模式与微服务?大多数情况下这些模式都适用于Gateway级别,这意味着当微服务不可用或没有响应时,在网关级别,我们可以决定是否使用断路器或超时模式将请求发送到微服务。此外,在Gateway级别实现诸如隔板之类模式也很重要,因为它是所有客户端请求的单个入口点,也因此发送服务中的故障不应影响其他微服务器的调用。

另外,Gateway可以作为中心点,我们可以通过Gateway调用每个微服务来获取每个微服务器的状态和监视。
 
微服务,企业集成,API管理和遐(瞎)想
我们专门研究过微服务架构的各种特点,以及如何在现代企业IT环境中实现它们。但是,我们应该记住,微服务不是灵丹妙药。流行语概念的盲目适应不会解决“真实”企业IT问题。

它微服务是有很多优势,我们也应该充分利用。但是我们还必须记住,解决所有企业IT问题与微服务之间联系不一定就是强相关。例如,Microservices架构促进消除ESB作为中央总线,但是当涉及到现实世界的IT时,现在有很多不是基于Microservices的应用程序/服务。所以,整合是避不开的解决思路,要做集成。

所以,理想情况下,Microservices和其他企业架构概念(如Integration)的混合方法将更为现实。以后再聊了,这个能写的太多。 希望这能让你更清楚地了解如何在企业中使用Microservices。
分享阅读原文: http://dwz.cn/6iVsiQ 

对付勒索病毒,Check Point有秘密武器

互联网资讯OT学习平台 发表了文章 • 0 个评论 • 128 次浏览 • 4 天前 • 来自相关话题

WannaCry的阴云还未散去,Petya就已经迫不及待的出现在人们视线之中, 6月27日东欧地区又爆发了新一轮的勒索软件(Petya)攻击事件,受灾最严重的当属乌克兰,大量的政府机构,私人企业遭到了勒索病毒的攻击。
Petya不是一个真正意义上的勒索病毒,但是其破坏力比之之前的Wanncry更加可怕,Petya不只是锁定特定文件,而是直接对磁盘的MBR下手,篡改MBR导致整个磁盘无法访问。具体来说就是Petya并不加密MBR用于后续的勒索,而是直接破坏前25个扇区,当硬盘的MBR损坏之后,计算机就无法再检索驱动器上的数据了。
而且Petya传播方式利用“永恒之蓝”和“永恒之岩”两个漏洞,这就导致了它可以通过内网渗透使用系统的WMIC和Sysinternals的PsExec传播,所以即便电脑修复“永恒之蓝”漏洞,只要内网有中毒电脑,仍有被感染的危险。
面对目前安全运维管理中存在的问题, Check Point独立安全产品解决方案将助您一臂之力。
7月25日14:00,Check Point与OTPUB直播平台携手举办的主题为“安全管理的未来发展趋势”直播活动,届时,Check Point资深网络安全顾问谭云老师,将对CheckPoint下一代安全管理体系进行详细阐述,为您打开安全管理的未来发展趋势。Check Point还将免费提供一次Securiy Check Up。抓紧时间预约活动报名。
 
点击此处预约报名>>> 查看全部
WannaCry的阴云还未散去,Petya就已经迫不及待的出现在人们视线之中, 6月27日东欧地区又爆发了新一轮的勒索软件(Petya)攻击事件,受灾最严重的当属乌克兰,大量的政府机构,私人企业遭到了勒索病毒的攻击。
Petya不是一个真正意义上的勒索病毒,但是其破坏力比之之前的Wanncry更加可怕,Petya不只是锁定特定文件,而是直接对磁盘的MBR下手,篡改MBR导致整个磁盘无法访问。具体来说就是Petya并不加密MBR用于后续的勒索,而是直接破坏前25个扇区,当硬盘的MBR损坏之后,计算机就无法再检索驱动器上的数据了。
而且Petya传播方式利用“永恒之蓝”和“永恒之岩”两个漏洞,这就导致了它可以通过内网渗透使用系统的WMIC和Sysinternals的PsExec传播,所以即便电脑修复“永恒之蓝”漏洞,只要内网有中毒电脑,仍有被感染的危险。
面对目前安全运维管理中存在的问题, Check Point独立安全产品解决方案将助您一臂之力。
7月25日14:00,Check Point与OTPUB直播平台携手举办的主题为“安全管理的未来发展趋势”直播活动,届时,Check Point资深网络安全顾问谭云老师,将对CheckPoint下一代安全管理体系进行详细阐述,为您打开安全管理的未来发展趋势。Check Point还将免费提供一次Securiy Check Up。抓紧时间预约活动报名。
 
点击此处预约报名>>>

Dockerfile—Cachecloud

运维技术Not see︶ 发表了文章 • 0 个评论 • 53 次浏览 • 2017-07-10 22:50 • 来自相关话题

通过dockerfile快速部署cachecloud——redis集群管理
 FROM centos:6.6
COPY cachecloud.sql /opt
ADD jdk-7u79-linux-x64.tar.gz /usr/local/
ADD apache-maven-3.3.9-bin.tar.gz /usr/local/
ADD soft.tar.gz /opt
ADD cachecloud-web.tar.gz /opt
RUN cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \ echo "Asia/shanghai" >> /etc/timezone && \
yum install passwd openssl openssh-server openssh-clients -y && \
echo 'admin123' | passwd --stdin root && \
sed -i '/^session\s\+required\s\+pam_loginuid.so/s/^/#/' /etc/pam.d/sshd && \
WORKDIR /opt/soft/cachecloud
ENV JAVA_HOME /usr/local/jdk1.7.0_79
ENV JRE_HOME $JAVA_HOME/jre
ENV CLASSPATH .:$JAVA_HOME/lib:$JRE_HOME/lib
ENV PATH $PATH:$JAVA_HOME/bin
ENV MVN_HOME /usr/local/apache-maven-3.3.9
ENV JRE_mvn $MVN_HOME/jre
ENV PATH $PATH:$MVN_HOME/bin
#RUN yum install -y mysql-server mysql
#RUN /etc/init.d/mysqld start &&\
# mysql -e "grant all privileges on *.* to 'root'@'%' identified by '123456';"&&\
# mysql -e "grant all privileges on *.* to 'root'@'localhost' identified by '123456';"&&\
# mysql -uroot -p123456 -e "grant all privileges on *.* to 'admin'@'%' identified by 'admin';"&&\
# mysql -uroot -p123456 -e "grant all privileges on *.* to 'admin'@'localhost' identified by 'admin';"&&\
# mysql -uroot -p123456 -e "CREATE DATABASE cachecloud DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;"&&\
# mysql -uroot -p123456 cachecloud < /opt/cachecloud.sql

RUN mvn clean compile install -Ponline && \
cp /opt/soft/cachecloud/cachecloud-open-web/target/cachecloud-open-web-1.0-SNAPSHOT.war /opt/cachecloud-web && \
cp /opt/soft/cachecloud/cachecloud-open-web/src/main/resources/cachecloud-web.conf /opt/cachecloud-web && \
ln -s /opt/cachecloud-web/cachecloud-open-web-1.0-SNAPSHOT.war /etc/init.d/cachecloud-web

RUN rpm -ivh [url]http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm[/url] RUN yum install -y supervisor
RUN mkdir -p /var/log/supervisor
COPY supervisord.conf /etc/supervisord.conf
EXPOSE 22 8585 9999
CMD ["/usr/bin/supervisord"] 查看全部
通过dockerfile快速部署cachecloud——redis集群管理
 
FROM centos:6.6
COPY cachecloud.sql /opt
ADD jdk-7u79-linux-x64.tar.gz /usr/local/
ADD apache-maven-3.3.9-bin.tar.gz /usr/local/
ADD soft.tar.gz /opt
ADD cachecloud-web.tar.gz /opt
RUN cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \
    echo "Asia/shanghai" >> /etc/timezone && \
yum install passwd openssl openssh-server openssh-clients -y && \
echo 'admin123' | passwd --stdin root && \
sed -i '/^session\s\+required\s\+pam_loginuid.so/s/^/#/' /etc/pam.d/sshd && \
WORKDIR /opt/soft/cachecloud
ENV JAVA_HOME /usr/local/jdk1.7.0_79
ENV JRE_HOME $JAVA_HOME/jre
ENV CLASSPATH .:$JAVA_HOME/lib:$JRE_HOME/lib
ENV PATH $PATH:$JAVA_HOME/bin
ENV MVN_HOME /usr/local/apache-maven-3.3.9
ENV JRE_mvn $MVN_HOME/jre
ENV PATH $PATH:$MVN_HOME/bin
#RUN yum install -y mysql-server mysql
#RUN /etc/init.d/mysqld start &&\
# mysql -e "grant all privileges on *.* to 'root'@'%' identified by '123456';"&&\
# mysql -e "grant all privileges on *.* to 'root'@'localhost' identified by '123456';"&&\
# mysql -uroot -p123456 -e "grant all privileges on *.* to 'admin'@'%' identified by 'admin';"&&\
# mysql -uroot -p123456 -e "grant all privileges on *.* to 'admin'@'localhost' identified by 'admin';"&&\
# mysql -uroot -p123456 -e "CREATE DATABASE cachecloud DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;"&&\
# mysql -uroot -p123456 cachecloud < /opt/cachecloud.sql

RUN mvn clean compile install -Ponline && \
cp /opt/soft/cachecloud/cachecloud-open-web/target/cachecloud-open-web-1.0-SNAPSHOT.war /opt/cachecloud-web && \
cp /opt/soft/cachecloud/cachecloud-open-web/src/main/resources/cachecloud-web.conf /opt/cachecloud-web && \
ln -s /opt/cachecloud-web/cachecloud-open-web-1.0-SNAPSHOT.war /etc/init.d/cachecloud-web

RUN rpm -ivh [url]http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm[/url] RUN yum install -y supervisor
RUN mkdir -p /var/log/supervisor
COPY supervisord.conf /etc/supervisord.conf
EXPOSE 22 8585 9999
CMD ["/usr/bin/supervisord"]

MySQL之BLGC介绍

数据库Rock 发表了文章 • 0 个评论 • 41 次浏览 • 2017-07-08 23:51 • 来自相关话题

一、组提交介绍

1.1 什么是组提交
Binary Log Group Commit 即二进制日志组提交。这是 MySQL5.6 版本中引进的一个新的特性。为什么需要引进这个特性呢?我们知道当我们把 MySQL 的 binlog 开启的时候,MySQL 会将每个事务的操作都记录到 binlog 中,方便我们使用 binlog 来完成复制或者恢复操作。可是需要调用 fsync() 才能将缓存中被更改的 binlog 真正的写到磁盘上,保证数据的持久化。但是这是一个从内存写到磁盘的过程,I/O 比较慢。如果每次事务提交都执行一遍 fsync() 将 binlog 持久化落盘到磁盘的话,效率很低。于是就想,能不能等几个事务的 binlog 一起调用一次 fsync(),一次性落盘。减少 fsync() 的次数,从而提高效率。这就是二进制日志组提交的概念。
 

二、两阶段提交

2.1 为什么需要二阶段提交
我们知道在 MySQL 中不仅仅有 binlog,还有 redo log 和 undo log 。binlog 用来记录每个事务的操作信息,redo 是在数据库宕机恢复时使用,用来恢复数据库数据,undo 用来回滚还未被提交的数据。binlog 是在数据库 Server 层产生的,即它会记录所有存储引擎中事务的操作,而 redo 是 InnoDB 存储引擎特有的日志。

在事务提交的时候,我们需要先写入二进制日志,再写 InnoDB 存储引擎的 redo。并且要求二进制日志和 redo 要么都写,要么都不写。不然可能会出现这样的情况:在主从复制的环境下,master 提交了一个事务,先写了二进制日志,但是在要写 InnoDB 存储引擎的时候,数据库发生了宕机,此时 binlog 又已经被 slave 接收到了,slave 会执行这个事务,但是实际 master 上并没有这个事务。这就会导致主从数据的不一致。所以我们引入了二阶段提交来解决这个问题,即将写 binlog 操作个 InnoDB 提交操作通过事务变成原子的。
 
2.2 什么是二阶段提交
所谓的二阶段提交就是,我在事务提交的时候,确保先将 binlog 写入,然后再到数据引擎层提交,并且这两个操作是原子的。在 MySQL 中用内部的 XA 事务来完成,即将这两个操作包装成一个事务的概念。




上图表示了二阶段提交的过程。当一个会话中的某一事务 COMMIT 的时候,进去二阶段提交的过程。首先数据库先去协调 Server 层和 Engine,询问是否都可以开始写日志,这个过程就是图中的的 prepare 阶段。协调好两层之间的关系,Server 层和 Engine 层都表示可以写日志,这时候进入下一个过程。

第二个过程就是写 binlog 的过程,先把 binlog 写到内存中,然后调用 fsync() 将 binlog 从内存写到磁盘上。

第三个过程就是在存储引擎层提交的过程,将真实修改的数据提交到数据库中。当这一步完成才最终返回给会话一个 COMMIT 成功的信号。

这整个过程就是二阶段提交的过程,如果在 fsync() 之前数据库 crash 了,重启之后数据将会被回滚,若在 fsync() 之后 crash,则会进行重做操作。通过二阶段提交的方式就保证了存储引擎与二进制日志保持一致。
 

三、三阶段提交

3.1 为什么需要三阶段提交
上面的二阶段提交是针对单一事务提交时候的操作顺序,下面我们来看看当多个事务并发的时候会是什么样的一个情况。




现在有T1、T2、T3 三个事务需要执行,从图中可以看到数据在 fsync() 之前,三个事务已经写入到了 binlog 中,通过 fsync() 操作将 binlog 刷到磁盘。之后先是 T2 COMMIT,将数据更改更新到存储引擎层,接着是 T3 COMMIT,将数据更新到存储引擎层。这时候我们做了一个热备份的操作,有多种方式进行数据库的热备份,比如:XtraBackup等。这时候就会发生错误。会发生什么错误,我们需要先了解一下 XtraBackup 等热备工具的备份原理。

XtraBackup备份原理:直接拷贝数据库文件,并且记录下当前二进制日志中已经提交的最后一个事务标记。在新的数据库实例上完成 recovery 操作。

了解完备份原理之后,我们就可以想到上述情况下做热备会出现什么情况。因为 T2、T3 已经提交,所以备份的时候会记录下 T3 是最后一个提交的事务,会认为 T3 之前的事务都是已经提交的,由于是直接拷贝数据库文件,可以看到 T1 事务的数据还没有提交到存储引擎层,所以备份数据中还并没有 T1 的数据。如果新的数据库是用来做主从复制的话,change master to 会指向二进制日志中 T3 的位置,从 T3 事务开始往后进行复制,这样一来 T1 事务的数据就这样没了。产生这个问题的主要原因就是:事务写入二进制日志的顺序与事务在存储引擎层提交的顺序不一致。

为了解决这个问题,MySQL 引入了 prepare_commit_mutext 的机制,当事务提交的时候,需要先获得 prepare_commit_mutext 这个锁。有了这个锁就可以保证事务写入二进制日志的顺序与事务在存储引擎层提交的顺序一致。




但是这样一来,从图中我们也可以看到,原先是并发的事务,又变成了串行的,效率又变低了。只要是问题,必然存在解决方法。于是三阶段提交就出现了。
 
 
3.2 什么是三阶段提交
三阶段提交,顾名思义有三个阶段: Flush 阶段、sync 阶段、commit 阶段。分别对应的就是二进制日志写内存的阶段、二进制日志刷盘的阶段、事务提交到存储引擎层的阶段。
 




每个阶段都有 leader、follower 两种角色。当一个事务进入三个阶段中的某一个阶段,如果发现这个阶段中的队列为空,那么这个事务就会成为 leader 的角色,之后进入同一阶段的事务,发现这个阶段的队列中已经有事务存在了,那就变成 follower 角色。leader 角色的任务是安排当前阶段队列中的事务按顺序执行,并且带领队列中所有的事务进入下一个阶段。当 leader 带领队列中的事务进入下一阶段的时候,如果发现下一阶段中已经有事务存在(即下一阶段已有 leader 存在),新来的 leader 自动变成 follower 角色。

三阶段提交在每个阶段都控制了事务的顺序,从而也就控制了事务执行的整体顺序。解决了 prepare_commit_mutex 锁导致的问题,事务可以并发的执行。

参考:http://blog.itpub.net/28218939/viewspace-1975809/
           http://blog.itpub.net/28218939/viewspace-1975822/
http://mysqlmusings.blogspot.jp/2012/06/binary-log-group-commit-in-mysql-56.html   查看全部


一、组提交介绍


1.1 什么是组提交
Binary Log Group Commit 即二进制日志组提交。这是 MySQL5.6 版本中引进的一个新的特性。为什么需要引进这个特性呢?我们知道当我们把 MySQL 的 binlog 开启的时候,MySQL 会将每个事务的操作都记录到 binlog 中,方便我们使用 binlog 来完成复制或者恢复操作。可是需要调用 fsync() 才能将缓存中被更改的 binlog 真正的写到磁盘上,保证数据的持久化。但是这是一个从内存写到磁盘的过程,I/O 比较慢。如果每次事务提交都执行一遍 fsync() 将 binlog 持久化落盘到磁盘的话,效率很低。于是就想,能不能等几个事务的 binlog 一起调用一次 fsync(),一次性落盘。减少 fsync() 的次数,从而提高效率。这就是二进制日志组提交的概念。
 


二、两阶段提交


2.1 为什么需要二阶段提交
我们知道在 MySQL 中不仅仅有 binlog,还有 redo log 和 undo log 。binlog 用来记录每个事务的操作信息,redo 是在数据库宕机恢复时使用,用来恢复数据库数据,undo 用来回滚还未被提交的数据。binlog 是在数据库 Server 层产生的,即它会记录所有存储引擎中事务的操作,而 redo 是 InnoDB 存储引擎特有的日志。

在事务提交的时候,我们需要先写入二进制日志,再写 InnoDB 存储引擎的 redo。并且要求二进制日志和 redo 要么都写,要么都不写。不然可能会出现这样的情况:在主从复制的环境下,master 提交了一个事务,先写了二进制日志,但是在要写 InnoDB 存储引擎的时候,数据库发生了宕机,此时 binlog 又已经被 slave 接收到了,slave 会执行这个事务,但是实际 master 上并没有这个事务。这就会导致主从数据的不一致。所以我们引入了二阶段提交来解决这个问题,即将写 binlog 操作个 InnoDB 提交操作通过事务变成原子的。
 
2.2 什么是二阶段提交
所谓的二阶段提交就是,我在事务提交的时候,确保先将 binlog 写入,然后再到数据引擎层提交,并且这两个操作是原子的。在 MySQL 中用内部的 XA 事务来完成,即将这两个操作包装成一个事务的概念。
twocommit.png

上图表示了二阶段提交的过程。当一个会话中的某一事务 COMMIT 的时候,进去二阶段提交的过程。首先数据库先去协调 Server 层和 Engine,询问是否都可以开始写日志,这个过程就是图中的的 prepare 阶段。协调好两层之间的关系,Server 层和 Engine 层都表示可以写日志,这时候进入下一个过程。

第二个过程就是写 binlog 的过程,先把 binlog 写到内存中,然后调用 fsync() 将 binlog 从内存写到磁盘上。

第三个过程就是在存储引擎层提交的过程,将真实修改的数据提交到数据库中。当这一步完成才最终返回给会话一个 COMMIT 成功的信号。

这整个过程就是二阶段提交的过程,如果在 fsync() 之前数据库 crash 了,重启之后数据将会被回滚,若在 fsync() 之后 crash,则会进行重做操作。通过二阶段提交的方式就保证了存储引擎与二进制日志保持一致
 


三、三阶段提交


3.1 为什么需要三阶段提交
上面的二阶段提交是针对单一事务提交时候的操作顺序,下面我们来看看当多个事务并发的时候会是什么样的一个情况。
t3commit.png

现在有T1、T2、T3 三个事务需要执行,从图中可以看到数据在 fsync() 之前,三个事务已经写入到了 binlog 中,通过 fsync() 操作将 binlog 刷到磁盘。之后先是 T2 COMMIT,将数据更改更新到存储引擎层,接着是 T3 COMMIT,将数据更新到存储引擎层。这时候我们做了一个热备份的操作,有多种方式进行数据库的热备份,比如:XtraBackup等。这时候就会发生错误。会发生什么错误,我们需要先了解一下 XtraBackup 等热备工具的备份原理。

XtraBackup备份原理:直接拷贝数据库文件,并且记录下当前二进制日志中已经提交的最后一个事务标记。在新的数据库实例上完成 recovery 操作。

了解完备份原理之后,我们就可以想到上述情况下做热备会出现什么情况。因为 T2、T3 已经提交,所以备份的时候会记录下 T3 是最后一个提交的事务,会认为 T3 之前的事务都是已经提交的,由于是直接拷贝数据库文件,可以看到 T1 事务的数据还没有提交到存储引擎层,所以备份数据中还并没有 T1 的数据。如果新的数据库是用来做主从复制的话,change master to 会指向二进制日志中 T3 的位置,从 T3 事务开始往后进行复制,这样一来 T1 事务的数据就这样没了。产生这个问题的主要原因就是:事务写入二进制日志的顺序与事务在存储引擎层提交的顺序不一致。

为了解决这个问题,MySQL 引入了 prepare_commit_mutext 的机制,当事务提交的时候,需要先获得 prepare_commit_mutext 这个锁。有了这个锁就可以保证事务写入二进制日志的顺序与事务在存储引擎层提交的顺序一致。
3tcommit.png

但是这样一来,从图中我们也可以看到,原先是并发的事务,又变成了串行的,效率又变低了。只要是问题,必然存在解决方法。于是三阶段提交就出现了。
 
 
3.2 什么是三阶段提交
三阶段提交,顾名思义有三个阶段: Flush 阶段、sync 阶段、commit 阶段。分别对应的就是二进制日志写内存的阶段、二进制日志刷盘的阶段、事务提交到存储引擎层的阶段。
 
3commit.png

每个阶段都有 leader、follower 两种角色。当一个事务进入三个阶段中的某一个阶段,如果发现这个阶段中的队列为空,那么这个事务就会成为 leader 的角色,之后进入同一阶段的事务,发现这个阶段的队列中已经有事务存在了,那就变成 follower 角色。leader 角色的任务是安排当前阶段队列中的事务按顺序执行,并且带领队列中所有的事务进入下一个阶段。当 leader 带领队列中的事务进入下一阶段的时候,如果发现下一阶段中已经有事务存在(即下一阶段已有 leader 存在),新来的 leader 自动变成 follower 角色。

三阶段提交在每个阶段都控制了事务的顺序,从而也就控制了事务执行的整体顺序。解决了 prepare_commit_mutex 锁导致的问题,事务可以并发的执行。


参考:http://blog.itpub.net/28218939/viewspace-1975809/
           http://blog.itpub.net/28218939/viewspace-1975822/
http://mysqlmusings.blogspot.jp/2012/06/binary-log-group-commit-in-mysql-56.html  


HDFS常用的一些命令

大数据/云计算being 发表了文章 • 0 个评论 • 58 次浏览 • 2017-07-07 14:52 • 来自相关话题

一、文件操作

1、列出HDFS下的文件
/usr/local/hadoop/bin/hadoop dfs -ls2、列出HDFS文件下名为in的文档中的文件
/usr/local/hadoop/bin/hadoop dfs -ls in3、上传文件
将hadoop目录下的test1文件上传到HDFS上并重命名为test
/usr/local/hadoop/bin/hadoop dfs -put test1 test4、文件被复制到本地系统中
将HDFS中的in文件复制到本地系统并命名为getin:
/usr/local/hadoop/bin/hadoop dfs -get in getin5、删除文档
删除HDFS下名为out的文档:
/usr/local/hadoop/bin/hadoop dfs -rmr out6、查看文件
查看HDFS下in文件中的内容:
/usr/local/hadoop/bin/hadoop dfs -cat in/*7、建立目录
/usr/local/hadoop/bin/hadoop dfs -mkdir /user/hadoop/examples(目录/目录名)只能一级一级的建目录。

8、复制文件
/usr/local/hadoop/bin/hadoop dfs -copyFromLocal 源路径 路径9、通过Hadoop命令把两个文件的内容合并起来
hdfs dfs -getmerge 位于hdfs中的原文件(里面有多个文件) 合并后的文件名
例如:
hdfs dfs -getmerge hdfs://Master:9000/data/SogouResult.txt CombinedResult 注:合并后的文件位于当前目录,不在hdfs中,是本地文件.
 

二、管理与更新
 

1、执行基本信息
查看HDFS的基本统计信息:
/usr/local/hadoop/bin/hadoop dfsadmin -report2、退出安全模式
NameNode在启动时会自动进入安全模式。安全模式是NameNode的一种状态,在这个阶段,文件系统不允许有任何修改。

系统显示Name node in safe mode,说明系统正处于安全模式,这时只需要等待十几秒即可,也可通过下面的命令退出安全模式:
/usr/local/hadoop/bin/hadoop dfsadmin -safemode leave3、进入安全模式
在必要情况下,可以通过以下命令把HDFS置于安全模式:
/usr/local/hadoop/bin/hadoop dfsadmin -safemode enter4、节点添加
添加一个新的DataNode节点,先在新加节点上安装好Hadoop,要和NameNode使用相同的配置(可以直接从NameNode复制),修改$HADOOP_HOME/conf/master文件,加入NameNode主机名。然后在NameNode节点上修改$HADOOP_HOME/conf/slaves文件,加入新节点名,再建立新加节点无密码的SSH连接,运行启动命令为:
/usr/local/hadoop/bin/start-all.sh5、负载均衡
HDFS的数据在各个DataNode中的分布可能很不均匀,尤其是在DataNode节点出现故障或新增DataNode节点时。新增数据块时NameNode对DataNode节点的选择策略也有可能导致数据块分布不均匀。用户可以使用命令重新平衡DataNode上的数据块的分布:
/usr/local/hadoop/bin/start-balancer.sh 查看全部


一、文件操作


1、列出HDFS下的文件
/usr/local/hadoop/bin/hadoop dfs -ls
2、列出HDFS文件下名为in的文档中的文件
/usr/local/hadoop/bin/hadoop dfs -ls in
3、上传文件
将hadoop目录下的test1文件上传到HDFS上并重命名为test
/usr/local/hadoop/bin/hadoop dfs -put test1 test
4、文件被复制到本地系统中
将HDFS中的in文件复制到本地系统并命名为getin:
/usr/local/hadoop/bin/hadoop dfs -get in getin
5、删除文档
删除HDFS下名为out的文档:
/usr/local/hadoop/bin/hadoop dfs -rmr out
6、查看文件
查看HDFS下in文件中的内容:
/usr/local/hadoop/bin/hadoop dfs -cat in/*
7、建立目录
/usr/local/hadoop/bin/hadoop dfs -mkdir /user/hadoop/examples(目录/目录名)
只能一级一级的建目录。

8、复制文件
/usr/local/hadoop/bin/hadoop dfs -copyFromLocal 源路径 路径
9、通过Hadoop命令把两个文件的内容合并起来
hdfs dfs -getmerge 位于hdfs中的原文件(里面有多个文件) 合并后的文件名
例如:
hdfs dfs -getmerge hdfs://Master:9000/data/SogouResult.txt CombinedResult
 注:合并后的文件位于当前目录,不在hdfs中,是本地文件.
 


二、管理与更新
 


1、执行基本信息
查看HDFS的基本统计信息:
/usr/local/hadoop/bin/hadoop dfsadmin -report
2、退出安全模式
NameNode在启动时会自动进入安全模式。安全模式是NameNode的一种状态,在这个阶段,文件系统不允许有任何修改。

系统显示Name node in safe mode,说明系统正处于安全模式,这时只需要等待十几秒即可,也可通过下面的命令退出安全模式:
/usr/local/hadoop/bin/hadoop dfsadmin -safemode leave
3、进入安全模式
在必要情况下,可以通过以下命令把HDFS置于安全模式:
/usr/local/hadoop/bin/hadoop dfsadmin -safemode enter
4、节点添加
添加一个新的DataNode节点,先在新加节点上安装好Hadoop,要和NameNode使用相同的配置(可以直接从NameNode复制),修改$HADOOP_HOME/conf/master文件,加入NameNode主机名。然后在NameNode节点上修改$HADOOP_HOME/conf/slaves文件,加入新节点名,再建立新加节点无密码的SSH连接,运行启动命令为:
/usr/local/hadoop/bin/start-all.sh
5、负载均衡
HDFS的数据在各个DataNode中的分布可能很不均匀,尤其是在DataNode节点出现故障或新增DataNode节点时。新增数据块时NameNode对DataNode节点的选择策略也有可能导致数据块分布不均匀。用户可以使用命令重新平衡DataNode上的数据块的分布:
/usr/local/hadoop/bin/start-balancer.sh